Join IoT Central | Join our LinkedIn Group | Post on IoT Central


Connectivity (66)

Then it seemed that overnight, millions of workers worldwide were told to isolate and work from home as best as they could. Businesses were suddenly forced to enable remote access for hundreds or thousands of users, all at once, from anywhere across the globe. Many companies that already offered VPN services to a small group of remote workers scurried to extend those capabilities to the much larger workforce sequestering at home. It was a decision made in haste out of necessity, but now it’s time to consider, is VPN the best remote access technology for the enterprise, or can other technologies provide a better long-term solution?

Long-term Remote Access Could Be the Norm for Some Time

Some knowledge workers are trickling back to their actual offices, but many more are still at home and will be for some time. Global Workplace Analytics estimates that 25-30% of the workforce will still be working from home multiple days a week by the end of 2021. Others may never return to an official office, opting to remain a work-from-home (WFH) employee for good.

Consequently, enterprises need to find a remote access solution that gives home-based workers a similar experience as they would have in the office, including ease of use, good performance, and a fully secure network access experience. What’s more, the solution must be cost effective and easy to administer without the need to add more technical staff members.

VPNs are certainly one option, but not the only one. Other choices include appliance-based SD-WAN and SASE. Let’s have a look at each approach.

VPNs Weren’t Designed to Support an Entire Workforce

While VPNs are a useful remote access solution for a small portion of the workforce, they are an inefficient technology for giving remote access to a very large number of workers. VPNs are designed for point-to-point connectivity, so each secure connection between two points – presumably a remote worker and a network access server (NAS) in a datacenter – requires its own VPN link. Each NAS has a finite capacity for simultaneous users, so for a large remote user base, some serious infrastructure may be needed in the datacenter.

Performance can be an issue. With a VPN, all communication between the user and the VPN is encrypted. The encryption process takes time, and depending on the type of encryption used, this may add noticeable latency to Internet communications. More important, however, is the latency added when a remote user needs access to IaaS and SaaS applications and services. The traffic path is convoluted because it must travel between the end user and the NAS before then going out to the cloud, and vice versa on the way back.

An important issue with VPNs is that they provide overly broad access to the entire network without the option of controlling granular user access to specific resources. Stolen VPN credentials have been implicated in several high-profile data breaches. By using legitimate credentials and connecting through a VPN, attackers were able to infiltrate and move freely through targeted company networks. What’s more, there is no scrutiny of the security posture of the connecting device, which could allow malware to enter the network via insecure user devices.

SD-WAN Brings Intelligence into Routing Remote Users’ Traffic

Another option for providing remote access for home-based workers is appliance-based SD-WAN. It brings a level of intelligence to the connectivity that VPNs don’t have. Lee Doyle, principal analyst with Doyle Research, outlines the benefits of using SD-WAN to connect home office users to their enterprise network:

  • Prioritization for mission-critical and latency-sensitive applications
  • Accelerated access to cloud-based services
  • Enhanced security via encryption, VPNs, firewalls and integration with cloud-based security
  • Centralized management tools for IT administrators

One thing to consider about appliance-based SD-WAN is that it’s primarily designed for branch office connectivity—though it can accommodate individual users at home as well. However, if a company isn’t already using SD-WAN, this isn’t a technology that is easy to implement and setup for hundreds or thousands of home-based users. What’s more, a significant investment must be made in the various communication and security appliances.

SASE Provides a Simpler, More Secure, Easily Scalable Solution

Cato’s Secure Access Service Edge (or SASE) platform provides a great alternative to VPN for remote access by many simultaneous workers. The platform offers scalable access, optimized connectivity, and integrated threat prevention that are needed to support continuous large-scale remote access.

Companies that enable WFH using Cato’s platform can scale quickly to any number of remote users with ease. There is no need to set up regional hubs or VPN concentrators. The SASE service is built on top of dozens of globally distributed Points of Presence (PoPs) maintained by Cato to deliver a wide range of security and networking services close to all locations and users. The complexity of scaling is all hidden in the Cato-provided PoPs, so there is no infrastructure for the organization to purchase, configure or deploy. Giving end users remote access is as simple as installing a client agent on the user’s device, or by providing clientless access to specific applications via a secure browser.

Cato’s SASE platform employs Zero Trust Network Access in granting users access to the specific resources and applications they need to use. This granular-level security is part of the identity-driven approach to network access that SASE demands. Since all traffic passes through a full network security stack built into the SASE service, multi-factor authentication, full access control, and threat prevention are applied to traffic from remote users. All processing is done within the PoP closest to the users while enforcing all corporate network and security policies. This eliminates the “trombone effect” associated with forcing traffic to specific security choke points on a network. Further, admins have consistent visibility and control of all traffic throughout the enterprise WAN.

SASE Supports WFH in the Short-term and Long-term

While some workers are venturing back to their offices, many more are still working from home—and may work from home permanently. The Cato SASE platform is the ideal way to give them access to their usual network environment without forcing them to go through insecure and inconvenient VPNs.

Originally posted here

Read more…

When I think about the things that held the planet together in 2020, it was digital experiences delivered over wireless connectivity that made remote things local.

While heroes like doctors, nurses, first responders, teachers, and other essential personnel bore the brunt of the COVID-19 response, billions of people around the world found themselves cut off from society. In order to keep people safe, we were physically isolated from each other. Far beyond the six feet of social distancing, most of humanity weathered the storm from their homes.

And then little by little, old things we took for granted, combined with new things many had never heard of, pulled the world together. Let’s take a look at the technologies and trends that made the biggest impact in 2020 and where they’re headed in 2021:

The Internet

The global Internet infrastructure from which everything else is built is an undeniable hero of the pandemic. This highly-distributed network designed to withstand a nuclear attack performed admirably as usage by people, machines, critical infrastructure, hospitals, and businesses skyrocketed. Like the air we breathe, this primary facilitator of connected, digital experiences is indispensable to our modern society. Unfortunately, the Internet is also home to a growing cyberwar and security will be the biggest concern as we move into 2021 and beyond. It goes without saying that the Internet is one of the world’s most critical utilities along with water, electricity, and the farm-to-table supply chain of food.

Wireless Connectivity

People are mobile and they stay connected through their smartphones, tablets, in cars and airplanes, on laptops, and other devices. Just like the Internet, the cellular infrastructure has remained exceptionally resilient to enable communications and digital experiences delivered via native apps and the web. Indoor wireless connectivity continues to be dominated by WiFi at home and all those empty offices. Moving into 2021, the continued rollout of 5G around the world will give cellular endpoints dramatic increases in data capacity and WiFi-like speeds. Additionally, private 5G networks will challenge WiFi as a formidable indoor option, but WiFi 6E with increased capacity and speed won’t give up without a fight. All of these developments are good for consumers who need to stay connected from anywhere like never before.

Web Conferencing

With many people stuck at home in 2020, web conferencing technology took the place of traveling to other locations to meet people or receive education. This technology isn’t new and includes familiar players like GoToMeeting, Skype, WebEx, Google Hangouts/Meet, BlueJeans, FaceTime, and others. Before COVID, these platforms enjoyed success, but most people preferred to fly on airplanes to meet customers and attend conferences while students hopped on the bus to go to school. In 2020, “necessity is the mother of invention” took hold and the use of Zoom and Teams skyrocketed as airplanes sat on the ground while business offices and schools remained empty. These two platforms further increased their stickiness by increasing the number of visible people and adding features like breakout rooms to meet the demands of businesses, virtual conference organizers, and school teachers. Despite the rollout of the vaccine, COVID won’t be extinguished overnight and these platforms will remain strong through the first half of 2021 as organizations rethink where and when people work and learn. There’s way too many players in this space so look for some consolidation.

E-Commerce

“Stay at home” orders and closed businesses gave e-commerce platforms a dramatic boost in 2020 as they took the place of shopping at stores or going to malls. Amazon soared to even higher heights, Walmart upped their game, Etsy brought the artsy, and thousands of Shopify sites delivered the goods. Speaking of delivery, the empty city streets became home to fleets FedEx, Amazon, UPS, and DHL trucks bringing packages to your front doorstep. Many retail employees traded-in working at customer-facing stores for working in a distribution centers as long as they could outperform robots. Even though people are looking forward to hanging out at malls in 2021, the e-commerce, distribution center, delivery truck trinity is here to stay. This ball was already in motion and got a rocket boost from COVID. This market will stay hot in the first half of 2021 and then cool a bit in the second half.

Ghost Kitchens

The COVID pandemic really took a toll on restaurants in the 2020, with many of them going out of business permanently. Those that survived had to pivot to digital and other ways of doing business. High-end steakhouses started making burgers on grills in the parking lot, while takeout pizzerias discovered they finally had the best business model. Having a drive-thru lane was definitely one of the keys to success in a world without waiters, busboys, and hosts. “Front of house” was shut down, but the “back of house” still had a pulse. Adding mobile web and native apps that allowed customers to easily order from operating “ghost kitchens” and pay with credit cards or Apple/Google/Samsung Pay enabled many restaurants to survive. A combination of curbside pickup and delivery from the likes of DoorDash, Uber Eats, Postmates, Instacart and Grubhub made this business model work. A surge in digital marketing also took place where many restaurants learned the importance of maintaining a relationship with their loyal customers via connected mobile devices. For the most part, 2021 has restauranteurs hoping for 100% in-person dining, but a new business model that looks a lot like catering + digital + physical delivery is something that has legs.

The Internet of Things

At its very essence, IoT is all about remotely knowing the state of a device or environmental system along with being able to remotely control some of those machines. COVID forced people to work, learn, and meet remotely and this same trend applied to the industrial world. The need to remotely operate industrial equipment or an entire “lights out” factory became an urgent imperative in order to keep workers safe. This is yet another case where the pandemic dramatically accelerated digital transformation. Connecting everything via APIs, modeling entities as digital twins, and having software bots bring everything to life with analytics has become an ROI game-changer for companies trying to survive in a free-falling economy. Despite massive employee layoffs and furloughs, jobs and tasks still have to be accomplished, and business leaders will look to IoT-fueled automation to keep their companies running and drive economic gains in 2021.

Streaming Entertainment

Closed movie theaters, football stadiums, bowling alleys, and other sources of entertainment left most people sitting at home watching TV in 2020. This turned into a dream come true for streaming entertainment companies like Netflix, Apple TV+, Disney+, HBO Max, Hulu, Amazon Prime Video, Youtube TV, and others. That said, Quibi and Facebook Watch didn’t make it. The idea of binge-watching shows during the weekend turned into binge-watching every season of every show almost every day. Delivering all these streams over the Internet via apps has made it easy to get hooked. Multiplayer video games fall in this category as well and represent an even larger market than the film industry. Gamers socially distanced as they played each other from their locked-down homes. The rise of cloud gaming combined with the rollout of low-latency 5G and Edge computing will give gamers true mobility in 2021. On the other hand, the video streaming market has too many players and looks ripe for consolidation in 2021 as people escape the living room once the vaccine is broadly deployed.

Healthcare

With doctors and nurses working around the clock as hospitals and clinics were stretched to the limit, it became increasingly difficult for non-COVID patients to receive the healthcare they needed. This unfortunate situation gave tele-medicine the shot in the arm (no pun intended) it needed. The combination of healthcare professionals delivering healthcare digitally over widespread connectivity helped those in need. This was especially important in rural areas that lacked the healthcare capacity of cities. Concurrently, the Internet of Things is making deeper inroads into delivering the health of a person to healthcare professionals via wearable technology. Connected healthcare has a bright future that will accelerate in 2021 as high-bandwidth 5G provides coverage to more of the population to facilitate virtual visits to the doctor from anywhere.

Working and Living

As companies and governments told their employees to work from home, it gave people time to rethink their living and working situation. Lots of people living in previously hip, urban, high-rise buildings found themselves residing in not-so-cool, hollowed-out ghost towns comprised of boarded-up windows and closed bars and cafés. Others began to question why they were living in areas with expensive real estate and high taxes when they not longer had to be close to the office. This led to a 2020 COVID exodus out of pricey apartments/condos downtown to cheaper homes in distant suburbs as well as the move from pricey areas like Silicon Valley to cheaper destinations like Texas. Since you were stuck in your home, having a larger house with a home office, fast broadband, and a back yard became the most important thing. Looking ahead to 2021, a hybrid model of work-from-home plus occasionally going into the office is here to stay as employees will no longer tolerate sitting in traffic two hours a day just to sit in a cubicle in a skyscraper. The digital transformation of how and where we work has truly accelerated.

Data and Advanced Analytics

Data has shown itself to be one of the world’s most important assets during the time of COVID. Petabytes of data has continuously streamed-in from all over the world letting us know the number of cases, the growth or decline of infections, hospitalizations, contact-tracing, free ICU beds, temperature checks, deaths, and hotspots of infection. Some of this data has been reported manually while lots of other sources are fully automated from machines. Capturing, storing, organizing, modeling and analyzing this big data has elevated the importance of cloud and edge computing, global-scale databases, advanced analytics software, and the growing importance of machine learning. This is a trend that was already taking place in business and now has a giant spotlight on it due to its global importance. There’s no stopping the data + advanced analytics juggernaut in 2021 and beyond.

Conclusion

2020 was one of the worst years in human history and the loss of life was just heartbreaking. People, businesses, and our education system had to become resourceful to survive. This resourcefulness amplified the importance of delivering connected, digital experiences to make previously remote things into local ones. Cheers to 2021 and the hope for a brighter day for all of humanity.

Read more…

By Michele Pelino

The COVID-19 pandemic drove businesses and employees to became more reliant on technology for both professional and personal purposes. In 2021, demand for new internet-of-things (IoT) applications, technologies, and solutions will be driven by connected healthcare, smart offices, remote asset monitoring, and location services, all powered by a growing diversity of networking technologies.

In 2021, we predict that:

  • Network connectivity chaos will reign. Technology leaders will be inundated by an array of wireless connectivity options. Forrester expects that implementation of 5G and Wi-Fi technologies will decline from 2020 levels as organizations sort through market chaos. For long-distance connectivity, low-earth-orbit satellites now provide a complementary option, with more than 400 Starlink satellites delivering satellite connectivity today. We expect interest in satellite and other lower-power networking technologies to increase by 20% in the coming year.
  • Connected device makers will double down on healthcare use cases. Many people stayed at home in 2020, leaving chronic conditions unmanaged, cancers undetected, and preventable conditions unnoticed. In 2021, proactive engagement using wearables and sensors to detect patients’ health at home will surge. Consumer interest in digital health devices will accelerate as individuals appreciate the convenience of at-home monitoring, insight into their health, and the reduced cost of connected health devices.
  • Smart office initiatives will drive employee-experience transformation. In 2021, some firms will ditch expensive corporate real estate driven by the COVID-19 crisis. However, we expect at least 80% of firms to develop comprehensive on-premises return-to-work office strategies that include IoT applications to enhance employee safety and improve resource efficiency such as smart lighting, energy and environmental monitoring, or sensor-enabled space utilization and activity monitoring in high traffic areas.*
  • The near ubiquity of connected machines will finally disrupt traditional business. Manufacturers, distributors, utilities, and pharma firms switched to remote operations in 2020 and began connecting previously disconnected assets. This connected-asset approach increased reliance on remote experts to address repairs without protracted downtime and expensive travel. In 2021, field service firms and industrial OEMs will rush to keep up with customer demand for more connected assets and machines.
  • Consumer and employee location data will be core to convenience. The COVID-19 pandemic elevated the importance location plays in delivering convenient customer and employee experiences. In 2021, brands must utilize location to generate convenience for consumers or employees with virtual queues, curbside pickup, and checking in for reservations. They will depend on technology partners to help use location data, as well as a third-party source of location trusted and controlled by consumers.

* Proactive firms, including Atea, have extended IoT investments to enhance employee experience and productivity by enabling employees to access a mobile app that uses data collected from light-fixture sensors to locate open desks and conference rooms. Employees can modify light and temperature settings according to personal preferences, and the system adjusts light color and intensity to better align with employees’ circadian rhythms to aid in concentration and energy levels. See the Forrester report “Rethink Your Smart Office Strategy.”

Originally posted HERE.

Read more…

By Patty Medberry

After 2020’s twists and turns, here’s hoping that 2021 ushers in a restored sense of “normal.” In thinking about what the upcoming year might bring for industrial IoT, three key trends emerge.

Trend #1: Securing operational technology (OT)

 IT will take a bolder posture to secure OT environments.

Cyber risks in industrial environments will continue to grow causing IT to take bolder steps to secure the OT network in 2021. The CISO and IT teams have accountability for cybersecurity across the enterprise. But often they do not have visibility into the OT network. Many OT networks use traditional measures like air gapping or an industrial demilitarized zone to protect against attacks. But these solutions are rife with backdoors. For example, third-party technicians and other vendors often have remote access to update systems, machines and devices. With increasing pressure from board members and government regulators to manage IoT/OT security risks, and to protect the business itself, the CISO and IT will need to do more.

Success requires OT’s help. IT cybersecurity practices that work in the enterprise are not always appropriate for industrial environments. What’s more, IT doesn’t have the expertise or insight into operational and process control technology. A simple patch could bring down production (and revenues).

Bottom line? Organizations will need solutions that strengthen cybersecurity while meeting IT and OT needs. For IT, that means visibility and control across their own environment to the OT network. For OT, it means security solutions that allow them respond to anomalies while keeping production humming.

Trend #2: Remote and autonomous operations

The need for operational resiliency will accelerate the deployment of remote and autonomous operations – driving a new class of networking.

The impact of changes brought on in 2020 is driving organizations to increasingly use IoT technologies for operational resiliency. After all, IoT helps keep a business up and running when people cannot be on the ground. It also helps improve safety and efficiencies by preventing unnecessary site visits and reducing employee movement throughout facilities.

In 2021, we will see more deployments aimed at sophisticated remote operations. These will go well beyond remote monitoring. They will include autonomous operational controls for select parts of a process and will be remotely enabled for other parts. Also, deployments will increasingly move toward full autonomy, eliminating the need for humans to be present locally or remotely. And more and more, AI will used for dynamic optimization and self-healing, in use cases such as:

  • autonomous guided vehicles for picking and packing, material handling, and autonomous container applications across manufacturing, warehouses and ports
  • increased automation of the distribution grid
  • autonomous haul trucks for mining applications
  • Computer-based train control for rail and mass transit

All these use cases require data instantly and in mass, demanding a network that can support that data plus deliver the speed required for analysis. This new class of industrial networking must provide the ability to handle more network bandwidth, offer zero latency data and support edge compute. It also needs security and scale to adapt quickly, ensuring the business is up and running – no matter what.

Trend #3: Managing multiple access technologies

Organizations will operate multiple-access technologies to achieve operational agility and flexibility.

While Ethernet has always been the foundation for connectivity in industrial IoT spaces, that connectivity is quickly expanding to wireless. Wireless helps reduce the pain of physical cabling and provides the flexibility and agility to upgrade, deploy and reconfigure the network with less operational downtime. Newer wireless technologies like Wi-Fi 6 and 5G also power use cases not possible in the past (or possible only with wired connectivity).

As organizations expand their IoT deployments, the need to manage multiple access technologies will grow. Successful deployments will require the right connectivity for the use case, otherwise, costs, complexity and security risks increase. With wireless choices including Wi-Fi, LoRaWAN, Wi-SUN, public or private cellular, Bluetooth and more, organizations will need to determine the best technology for each use case.  

Cisco’s recommendation: Build an access strategy to optimize costs and resources while ensuring security. Interactions between access technologies should deliver a secured and automated end-to-end IP infrastructure – and must avoid a “mishmash” leading to complexity and failed objectives.

As the end of 2020 fast approaches, I wish everyone a safe and healthy New Year. As you continue building and refining your plans for 2021, please consider how you can unleash these IoT network trends to reduce your cybersecurity risks and increase your operational resiliency. 

Originally posted HERE.

Read more…

Figure 1: Solution architecture with AWS IoT core

Critical and high-value assets are always on the move, and this holds across practically every industry vertical relying on supply chain and logistics operations. Naturally, enterprises seek ways to track their assets with the shipment carrier in ways that are most optimal to their requirements. The end goal is often to have greater visibility and control of assets while in transit with the shipment carrier while opening up opportunities to optimize business operations based on insights-driven decisions.

For assets in transit, proactive shipment monitoring results in greater reliability of the shipment's integrity by way of real-time updates about the shipment's location, transit status, and conditions like temperature and humidity (for perishable shipments). All this information helps quick issue identification and remediation by the respective stakeholders. This helps minimize losses and reduced insurance claims, which results in further cost optimization for the enterprise while delivering a delightful purchase experience to their customers.

A solution to address such requirements would need to be an IoT (Internet of Things) solution requiring a combination of tracker devices (hardware), cloud apps (software platform), enterprise systems integrations (with SCM, ERP & similar systems), and professional services & support for field installation & continuous data insights. For most enterprises, this implementation of the Internet of things is complex and non-core. Such an IoT solution requires the investment of capital, time, and expertise to build and deploy such a solution, especially one that's secure and scalable.

In this post, we'll discuss such an IoT solution that is built using AWS IoT Core and can be delivered in an affordable manner such that it's ready to use within a matter of days or weeks. The solution leverages GPS-enabled tracker hardware comprising condition monitoring sensors like temperature, humidity, shock impact, and ambient light. This device can be used to track entire containers or pallets having multiple cartons or even individual item boxes depending on the requirements. The shock impact sensor on the device indicates asset mishandling based on threshold limits, and the light sensor can indicate potentially unauthorized use/asset theft. Such a device requires a cellular connectivity service to communicate sensor data to the cloud per pre-configured rules.

By way of API integrations using AWS SDKs for the Internet of things, the tracker devices are first connected and authenticated. The data they generate is published to a cloud app powered by AWS IoT Core in real-time or at preset time intervals. The data sent to the cloud app is in JSON-format message payloads sent via the MQTT protocol supported by AWS IoT Core; and is presented on the Frontend Dashboard UI in a rich, interactive manner on a map interface with sensor-specific information available within a couple of taps/clicks.

These sensor data messages are further forwarded to other back-end systems like AWS IoT Analytics. The data is usually saved in a time-series data store for analysis and insights later in time. Additionally, API integrations can also be easily built for the cloud app to work with enterprise apps like Transport Management Systems and Warehouse Management Systems to realize autonomous supply chain operations. Business rules define such movement of data- and operations-specific logic and is handled via AWS's Rules Engine service, which also can be used to transform device data before forwarding it to a different application.

However, not every data point a sensor picks up needs to be sent to the cloud app unless such a mandate exists, often due to regulatory compliance requirements in verticals like healthcare and pharmaceuticals. The Dashboard UI on the cloud provides a simple interface to set ranges of minimum and maximum sensor readings acceptable. Any breach of this range is immediately notified as an alert to the team responsible for monitoring the shipment. The team can then contact the shipment carrier to take corrective action. Such ranges can also be separately configured within mere seconds for each shipment per its monitoring requirements.

The secure bidirectional messaging between the tracker device and the cloud app is enabled via AWS IoT Core's Device Gateway, which scales automatically to process millions of messages in either direction while ensuring low latency mission-critical applications.

This makes the purpose-built shipment monitoring solution completely configurable and hence scalable while still being quickly deployable without the hassles of capital expenses and significant resource time spent in custom building such solutions from scratch.

Summary

The intelligent shipment monitoring solution enables enterprises to have greater control over the movement of their assets while having enough data and insights over time to optimize business operations as required.

With AWS IoT Core and AWS IoT Analytics, such a data-driven outcome approach to handle supply chain operations delivers transformational benefits such as reduced losses, greater cost control, and improved customer satisfaction rates that can result in sustainable competitive advantage in the marketplace.

Originally posted HERE.

Read more…

In order to form proper networks to share data, the Internet of Things (IoT) needs reliable communications and connectivity. Because of popular demand, there’s a wide range of connectivity technologies that operators, as well as developers, can opt for.

IoT Connectivity Groups

The IoT connectivity technologies are currently divided into two groups. The first one is cellular-based, and the second one is unlicensed LPWAN. The first group is based around a licensed spectrum, something which offers an infrastructure that is consistent and better. This group supports larger data rates, but it comes with a cost of short battery life and expensive hardware. However, you don’t have to worry about this a lot as its hardware is becoming cheaper.

Cellular-Based IoT

Because of all this, cellular-based IoT is only offered by giant operators. The reason behind this is that acquiring licensed spectrum is expensive. But these big operators have access to this licensed spectrum, as well as expensive hardware. The cellular IoT connectivity also has its own two types. The first one being the narrowband IoT (NB-IoT) and category M1 IoT (Cat-M1).

Although both are based on cellular standards, there is one big difference between the two. That NB-IoT has a smaller bandwidth than Cat-M1, and thus offers a lower transmission power. In fact, its bandwidth is 10x smaller than that of Cat-M1. However, both still have a very long range with NB-IoT offering a range of up to 100 Km.

The cellular standard based IoT connectivity ensure more reliability. Their device operational lifetimes are longer as compared to unlicensed LPWAN. But when it comes to choosing, most operators prefer NB-IoT over Cat-M1. This is because Cat-M1 provides higher data rates that are not usually necessary. In addition to this, the higher costs of it prevent operators from choosing it.

Cat-M1 is mostly chosen by large-scale operators because it provides mobility support. This is something suitable for transportation and traffic control-based network. It can also be useful in emergency response situations as it offers voice data transfer.

The hardware (module) used for cellular IoT is relatively more expensive compared to LPWAN. It can cost around $10, compared to $2 LPWAN. However, this cost has been dropping rapidly recently because of its popular demand. 

Unlicensed LPWAN

As for the unlicensed LPWANs, they are used by those who don’t have the budget to afford cellular-based IoT. They are designed for customized IoT networks and offer lower data rates, but with increased battery life and long transmission range. They can also be deployed easily. At the moment, there are two types of unlicensed LPWANs, LoRa (Long Range) and SigFox.

Both types are amazing as they designed for devices that have a lower price, increased battery life, and long range. Their coverage range can be up to 10 Km, and their connectivity cost is as low as $2 per module. Not only this, but the cost is even lower than this sometimes. Therefore, they are ideal for local areas.

Weightless LPWAN

Although there are many variants of the LPWAN, Weightless is considered to be the most popular one. This is because the Weightless Special Interest Group, or the SIG, currently offers three different protocols. These include the Weightless-N, the Weightless-W, and the Weightless-P. All three work in a different way as they have different modalities.

Weightless-W

First off, we have the Weightless-W open standard model. This one is designed to operate in TV white space (TVWS). TV Whitespace (TVWS) is the inactive or unoccupied space found between channels actively used in UHF and VHF spectrum its frequency spans from 470 MHz – 790 MHz. For those who don’t know, this is similar to what Neul was developing before getting acquired by Huawei. Now, while using TVWS can be great as it uses ultra-high frequency spectrum, it has one downside. In theory, it seems perfect. But in practice, it is difficult because the rules and regulations for utilizing TVWS for IoT vary greatly.

In addition to this, the end nodes of this model don’t work like they are supposed to. They are designed to operate in a small part of the spectrum. As is difficult to design an antenna that can cover a such wide band of spectrum. This is why TVWS can be difficult when it comes to installing it. The Weightless-W is considered a good option in:

  • Smart Oil sector.
  • Gas sector.

Weightless-N

Second up we have the ultra-narrowband system, the Weightless-N. This model is similar to SigFox as both have a lot in common. The best thing about it is it is made up of different networks instead of being an end-to-end enclosed system. Weightless-N uses differential binary phase shift keying (DBPSK) digital modulation scheme same as of used in SigFox.

The Weightless-N line is operated by Nwave, a popular IoT hardware and software developer. However, while is model is best for sensor-based networks, temperature readings, tank level monitoring, and more, there are some problems with it. For instance, Nwave has a special requirement for TCXO, that is the temperature compensated crystal oscillator.

 In addition to this, it has an unbalanced link budget. The reason behind why this is bad is that there will be much more sensitivity going up to the base station compared to what will be coming down. 

Weightless-P

Finally, we have the Weightless-P. This model is the latest one in the group as it was launched some time after the above two. What people love the most about this one is that it has two-way features. In addition to this, it has a 12.5 kHz channel that is pretty amazing. The Weightless-P doesn’t require a TXCO, something which makes it different from Weightless-N and -W.

The main company behind Weightless-P is Ubiik. The only downside about this model is that it is not ideal for wide-area networks as it offers a range of around 2 Km. However, the Weightless-P is still ideal for:

  • Private Networks
  • Extra sophisticated use cases.
  • Areas where uplink data and downlink control are important.

Capacity

Because of the fact that the Weightless protocols are based on SDR, its base station for narrowband signals is much more complex. This is something that ends up creating thousands of small binary phase-shift keying channels. Although this will let you get more capacity, it will become a burden on your wallet.

In addition to this, since the Weightless-N end nodes require a TXCO, it will be more expensive. The TXCO is used when there is a threat of the frequency becoming unstable when the temperature gets disturbed at the end node.

Range

Talking about the ranges, the Weightless-N and -W has a range of around 5 Km in Urban environments. As for the Weightless-P, it can go up to 2 Km.

Comparison

Weightless and SigFox

If we take the technology into consideration, then the Weightless-N and SigFox are pretty similar. However, they are different when it comes to go-to-market. Since Weightless is a standard, it will require another company to create an IoT based on it. However, this is not the case with SigFox as it is a different type of solution.

Weightless and LoRa

In terms of technology, the Weightless and LoRa. Lorawan are different. However, the functionally of the Weightless-N and LoRaWAN is similar. This is because both are uplink-based systems. Weightless is also sometimes considered as the very good alternative when LoRa is not feasible to the user.

Weightless and Symphony Link

The Symphony Link and Weightless-P standards are more similar to each other. For instance, both focus on private networks. However, Symphony Link has a much more better range performance because it uses LoRa instead of Minimum-shift keying modulation MSK.

Originaly posted here

Read more…

An edge device is the network component that is responsible for connecting a local area network to an external or wide area network, which can be accessed from anywhere. Edge devices offer several new services and improved outcomes for IoT deployments across all markets. Smart services that rely on high volumes of data and local analysis can be deployed in a wide range of environments.

Edge device provides the local data to an external network. If protocols are different in local and external networks, it also translates this information, and make the connection between both network boundaries. Edge devices analyze diagnostics and automatic data populating; however, it is necessary to make a secure connection between the field network and cloud computing. In the event of loss of internet connection or cloud crash edge device will store data until the connection is established, so it won’t lose any process information. The local data storage is optional and not all edge devices offer local storage, it depends on the application and service required to implement on the plant.

How does an edge device work?

An edge device has a very straightforward working principle, it communicates between two different networks and translates one protocol into another. Furthermore, it creates a secure connection with the cloud.

An edge device can be configured via local access and internet or cloud. In general, we can say an edge device is a plug-and-play, its setup is simple and does not require much time to configure.

Why should I use an edge device?

Depending on the service required in the plant, the edge devices will be a crucial point to collect the information and create an automatic digital twin of your device in the cloud. 

Edge devices are an essential part of IoT solutions since they connect the information from a network to a cloud solution. They do not affect the network but only collect the data from it, and never cause a problem with the communication between the control system and the field devices. by using an edge device to collect information, the user won’t need to touch the control system. Edge is one-way communication, nothing is written into the network, and data are acquired with the highest possible security.

Edge device requirements

Edge devices are required to meet certain requirements that are to meet at all conditions to perform in different secretions. This may include storage, network, and latency, etc.

Low latency

Sensor data is collected in near real-time by an edge server. For services like image recognition and visual monitoring, edge servers are located in very close proximity to the device, meeting low latency requirements. Edge deployment needs to ensure that these services are not lost through poor development practice or inadequate processing resources at the edge. Maintaining data quality and security at the edge whilst enabling low latency is a challenge that need to address.

Network independence

IoT services do not care for data communication topology.  The user requires the data through the most effective means possible which in many cases will be mobile networks, but in some scenarios, Wi-Fi or local mesh networking may be the most effective mechanism of collecting data to ensure latency requirements can be met.

Good-Edge-IOT-Device-1024x576.jpg

Data security

Users require data at the edge to be kept secure as when it is stored and used elsewhere. These challenges need to meet due to the larger vector and scope for attacks at the edge. Data authentication and user access are as important at the edge as it is on the device or at the core.  Additionally, the physical security of edge infrastructure needs to be considered, as it is likely to hold in less secure environments than dedicated data centers.

Data Quality

Data quality at the edge is a key requirement to guarantee to operate in demanding environments. To maintain data quality at the edge, applications must ensure that data is authenticated, replicated as and assigned into the correct classes and types of data category.

Flexibility in future enhancements

Additional sensors can be added and managed at the edge as requirements change. Sensors such as accelerometers, cameras, and GPS, can be added to equipment, with seamless integration and control at the edge.

Local storage

Local storage is essential in the event of loss of internet connection or cloud crash edge device will store data until the connection is established, so it won’t lose any process information. The local data storage is optional and not all edge devices offer local storage, it depends on the application and service required to implement on the plant

Originaly Posted here

Read more…

When you’re in technology, you have to expect change. Yet, there’s something to the phrase “the more things change, the more they stay the same.” For instance, I see in the industrial internet of things (IIoT) a realm that’ll dramatically shape the future - how we manufacture, the way we run our factories, workforce needs – but the underlying business goals are the same as always.

Simply put, while industrial enterprise initiatives may change, financial objectives don’t – and they’re still what matter most. That’s why IIoT is so appealing. While the possibilities of smart and connected operations, sites and products certainly appeal to the dreamer and innovator, the clear payoff ensures that it’s a road even the most pragmatic decision-maker will eagerly follow.

The big three
When it comes to industrial enterprises, IIoT addresses the “big three” financial objectives head on. The technology maximizes revenue growth, reduces operating expense and increases asset efficiency.

IIoT does this in numerous ways. It yields invaluable operational intelligence, like real-time performance management data, to reduce manufacturing costs, increase flexibility and enable agility. When it comes to productivity, connected digital assets can empower a workforce with actionable insights to improve productivity and quality, even prevent safety and compliance issues.

For example, recognizing defects in a product early on can save time, materials, staff hours and possibly even a company’s reputation.

Whether on or off the factory floor, IIoT can be used to optimize asset efficiency. With real-time monitoring, diagnostics and analytics, downtime can be reduced or avoided. Asset utilization can also be evaluated and maximized. Think applications like equipment health monitoring, predictive maintenance, the ability to provide augmented 3D instructions for complex repairs. And, you can also scale production more precisely via better control over processes and inventory.

All of this accelerates time to market; another key benefit of IIoT and long held business goal.

Why is 5G important for IIoT and augmented reality (AR)?
As we look at the growing need to connect more devices, more sensors and install things like real-time cameras for doing analytics, there is growing stress and strain that is brought into industrial settings. We have seen the need to increase connectivity while having greater scalability, performance, accessibility, reliability, and broader reach with a lower cost of ownership become much more important. This is where 5G can make a real difference.

Many of our customers have seen what we are doing with augmented reality and the way that PTC can help operators service equipment. But in the not so distant future, the way that people interact with robotics, for example, will change. There will be real-time video to do spatial analytics on the way that people are working with man and machines and we’ll be able to unlock a new level of intelligence with a new layer of connectivity that helps drive better business outcomes.

Partner up
It sounds nice but the truth is, a lot of heavy lifting is required to do IIoT right. The last thing you want to do is venture into a pilot, run into problems, and leave the C-suite less than enthused with the outcome. And make no mistake, there’s a lot potential pitfalls to be aware of.

For instance, lengthy proof of concept periods, cumbersome processes and integrations can slow time to market. Multiple, local integrations can be required when connectivity and device management gets siloed. If not done right, you may only gain limited visibility into devices and the experience will fall short. And, naturally, global initiatives can be hindered by high roaming costs and deployment obstacles.

That said, you want to harness best of breed providers, not only to realize the full benefits of Industry 4.0, but to set yourself up with a foundation that’ll be able to harness 5G developments. You need a trusted IoT partner, and because of the sophistication and complexity, it takes an ecosystem of proven innovators working collaboratively.

That’s why PTC and Ericsson are partners.

Doing what’s best
Ericsson unlocks the full value of global cellular IoT connectivity and provides on-premise solutions. PTC offers an industrial IoT platform that’s ready to configure and deploy, with flexible connectivity and capabilities to build solutions without manual coding.

Drilling down a bit further, Ericsson’s IoT Accelerator can connect and manage billions of devices and millions of applications easily, seamlessly and globally. PTC’s IoT solutions digitalize processes and products, combining the physical and digital worlds seamlessly.

And with wireless connectivity, we can deploy a lot of new technology – from augmented reality to artificial intelligence applications – without having to think about the time and cost of creating fixed infrastructures, running wires, adding network capacity and more.

According ABI Research, organizations that embrace Industry 4.0 and private cellular have the potential to improve gross margins by 5-13% in factory and warehouse operations. Manufacturers can expect a 10x return on their investment. And with 4.3 billion wireless connections in smart factories anticipated by 2030, it’s clear where things are headed.

By focusing on what we each do best, PTC and Ericsson is able to do what’s best for our customers. We can help them build and scale global cellular IoT deployments faster and gain a competitive advantage. They can reap the advantages of Industry 4.0 and create that path to 5G, future-proofing their operations and enjoying such differentiators as network slicing, edge computing and high-reliability, low latency communications.

Further, with our histories of innovation, customers are assured they’ll be supported in the future, remaining out front with the ability to adapt to change, grow and deliver on financial objections.

Editor's Note: This post was originally published by Steve Dertien, Chief Technology Officer for PTC, on Ericsson's website, and is part of a joint content effort with Kiva Allgood, head of IoT for Ericsson. To view Steve's original, please click here. To read Kiva's complementary post, please click here.

Read more…

Impact of IoT in Inventory

Internet of Things (IoT) has revolutionized many industries including inventory management. IoT is a concept where devices are interconnected via the internet. It is expected that by 2020, there will be 26 billion devices connected worldwide. These connections are important because it allows data sharing which then can perform actions to make life and business more efficient. Since inventory is a significant portion of a company’s assets, inventory data is vital for an accounting department for the company’s asset management and annual report.

Inventory solutions based on IoT and RFID, individual inventory item receives an RFID tag. Each tag has a unique identification number (ID) that contains information about an inventory item, e.g. a model, a batch number, etc. these tags are scanned by RF reader. Upon scanning, a reader extracts its IDs and transmits them to the cloud for processing. Along with the tag’s ID, the cloud receives location and the time of reading. This data is used for updates about inventory items’, allowing users to monitor the inventory from anywhere, in real-time.

Industrial IoT

The role of IoT in inventory management is to receive data and turn it into meaningful insights about inventory items’ location, status, and giving users a corresponding output. For example, based on the data, and inventory management solution architecture, we can forecast the number of raw materials needed for the upcoming production cycle. The output of the system can also send an alert if any individual inventory item is lost.

Moreover, IoT based inventory management solutions can be integrated with other systems, i.e. ERP and share data with other departments.

RFID in Industrial IoT

RFID consist of three main components tag, antenna, and a reader

Tags: An RFID tag carries information about a specific object. It can be attached to any surface, including raw materials, finished goods, packages, etc.

RFID antennas: An RFID antenna receives signals to supply power and data for tags’ operation

RFID readers: An RFID reader, uses radio signals to read and write to the tags. The reader receives data stored in the tag and transmits it to the cloud.

Benefits of IoT in inventory management

The benefits of IoT on the supply chain are the most exciting physical manifestations we can observe. IoT in the supply chain creates unparalleled transparency that increases efficiencies.

Inventory tracking

The major benefit of inventory management is asset tracking, instead of using barcodes to scan and record data, items have RFID tags which can be registered wirelessly. It is possible to accurately obtain data and track items from any point in the supply chain.

With RFID and IoT, managers don’t have to spend time on manual tracking and reporting on spreadsheets. Each item is tracked and the data about it is recorded automatically. Automated asset tracking and reporting save time and reduce the probability of human error.

Inventory optimization

Real-time data about the quantity and the location of the inventory, manufacturers can reduce the amount of inventory on hand while meeting the needs of the customers at the end of the supply chain.

The data about the amount of available inventory and machine learning can forecast the required inventory which allows manufacturers to reduce the lead time.

Remote tracking

Remote product tracking makes it easy to have an eye on production and business. Knowing production and transit times, allows you to better tweak orders to suit lead times and in response to fluctuating demand. It shows which suppliers are meeting production and shipping criteria and which needs monitoring for the required outcome.

It gives visibility into the flow of raw materials, work-in-progress and finished goods by providing updates about the status and location of the items so that inventory managers see when an individual item enters or leaves a specific location.

Bottlenecks in the operations

With the real-time data about the location and the quantity, manufacturers can reveal bottlenecks in the process and pinpoint the machine with lower utilization rates. For instance, if part of the inventory tends to pile up in front of a machine, a manufacturer assumes that the machine is underutilized and needs to be seen to.

The Outcomes

The data collected by inventory management is more accurate and up-to-date. By reducing these time delays, the manufacturing process can enhance accuracy and reduce wastage. An IoT-based inventory management solution offers complete visibility on inventory by providing real-time information fetched by RFID tags. It helps to track the exact location of raw materials, work-in-progress and finished goods. As a result, manufacturers can balance the amount of on-hand inventory, increase the utilization of machines, reduce lead time, and thus, avoid costs bound to the less effective methods. This is all about optimizing inventory and ensuring anything ordered can be sold through whatever channel necessary.

Originally posted here

Read more…

Theoratical Embedded Linux requirements

Hardware

SoC

A System on Chip (SoC), is essentially an integrated circuit that takes a single platform and integrates an entire computer system onto it. It combines the power of the CPU with other components that it needs to perform and execute its functions. It is in charge of using the other hardware and running your software. The main advantage of SoC includes lower latency and power saving.

It is made of various building blocks:

  • Core + Caches + MMU – An SoC has a processor at its core which will define its functions. Normally, an SoC has multiple processor cores. For a “real” processor, e.g. ARM Cortex-A9. It’s the main thing kept in mind while choosing an SoC. Maybe co-adjuvanted by e.g. a SIMD co-processor like NEON.
  • Internal RAM – IRAM is composed of very high-speed SRAM located alongside the CPU. It acts similar to a CPU cache, and generally very small. It is used in the first phase of the boot sequence.
  • Peripherals – These can be a simple ADC, DSP, or a Graphical Processing Unit which is connected via some bus to the Core. A low power/real-time co-processor helps the main Core with real-time tasks or handle low power states. Examples of such IP cores are USB, PCI-E, SGX, etc.

External RAM

An SoC uses RAM to store temporary data during and after bootstrap. It is the memory an embedded system uses during regular operation.

Non-Volatile Memory

In an Embedded system or single-board computer, it is the SD card. In other cases, it can be a NAND, NOR, or SPI Data flash memory. It is the source of data the SoC reads and stores all the software components needed for the system to work.

External Peripherals

An SoC must have external interfaces for standard communication protocols such as USB, Ethernet, and HDMI. It also includes wireless technology protocols of Wi-Fi and Bluetooth.

Software

Second-Article-01-1024x576.jpghttps://www.tirichlabs.com/storage/2020/09/Second-Article-01-300x169.jpg 300w, https://www.tirichlabs.com/storage/2020/09/Second-Article-01-768x432.jpg 768w, https://www.tirichlabs.com/storage/2020/09/Second-Article-01-1200x675.jpg 1200w" alt="" />

First of all, we introduce the boot chain which is the series of actions that happens when an SoC is powered up.

Boot ROM: It is a piece of code stored in the ROM which is executed by the booting core when it is powered-on. This code contains instructions for the configuration of SoC to allow it to execute applications. The configurations performed by Boot ROM include initialization of the core’s register and stack pointer, enablement of caches and line buffers, programming of interrupt service routine, clock configuration.

Boot ROM also implements a Boot Assist Module (BAM) for downloading an application image from external memories using interfaces like Ethernet, SD/MMC, USB, CAN, UART, etc.

1st stage bootloader

In the first-stage bootloader performs the following

  • Setup the memory segments and stack used by the bootloader code
  • Reset the disk system
  • Display a string “Loading OS…”
  • Find the 2nd stage boot loader in the FAT directory
  • Read the 2nd stage boot loader image into memory at 1000:0000
  • Transfer control to the second-stage bootloader

It copies the Boot ROM into the SoC’s internal RAM. Must be tiny enough to fit that memory usually well under 100kB. It initializes the External RAM and the SoC’s external memory interface, as well as other peripherals that may be of interest (e.g. disable watchdog timers). Once done, it executes the next stage, depending on the context, which could be called MLO, SPL, or else.

2nd stage bootloader

This is the main bootloader and can be 10 times bigger than the 1st stage, it completes the initialization of the relevant peripherals.

  • Copy the boot sector to a local memory area
  • Find kernel image in the FAT directory
  • Read kernel image in memory at 2000:0000
  • Reset the disk system
  • Enable the A20 line
  • Setup interrupt descriptor table at 0000:0000
  • Setup the global descriptor table at 0000:0800
  • Load the descriptor tables into the CPU
  • Switch to protected mode
  • Clear the prefetch queue
  • Setup protected mode memory segments and stack for use by the kernel code
  • Transfer control to the kernel code using a long jump

Linux Kernel

The Linux kernel is the main component of a Linux OS and is the core interface between hardware and processes. It communicates between the hardware and processes, managing resources as efficiently as possible. The kernel performs following jobs

  • Memory management: Keep track of memory, how much is used to store what, and where
  • Process management: Determine which processes can use the processor, when, and for how long
  • Device drivers: Act as an interpreter between the hardware and the processes
  • System calls and security: Receive requests for the service from processes

To put the kernel in context, they can be interpreted as a Linux machine as having 3 layers:

  • The hardware: The physical machine—the base of the system, made up of memory (RAM) and the processor (CPU), as well as input/output (I/O) devices such as storage, networking, and graphics.
  • The Linux kernel: The core of the OS. It is a software residing in memory that tells the CPU what to do.
  • User processes: These are the running programs that the kernel manages. User processes are what collectively makeup user space. The kernel allows processes and servers to communicate with each other.

Init and rootfs – init is the first non-Kernel task to be run, and has PID 1. It initializes everything needed to use the system. In production embedded systems, it also starts the main application. In such systems, it is either BusyBox or a custom-crafted application.

View original post here

Read more…

7811924256?profile=RESIZE_400x

 

CLICK HERE TO DOWNLOAD

This complete guide is a 212-page eBook and is a must read for business leaders, product managers and engineers who want to implement, scale and optimize their business with IoT communications.

Whether you want to attempt initial entry into the IoT-sphere, or expand existing deployments, this book can help with your goals, providing deep understanding into all aspects of IoT.

CLICK HERE TO DOWNLOAD

Read more…

Edge Products Are Now Managed At The Cloud

Now more than ever, there are billions of edge products in the world. But without proper cloud computing, making the most of electronic devices that run on Linux or any other OS would not be possible.

And so, a question most people keep asking is which is the best Software-as-a-service platform that can effectively manage edge devices through cloud computing. Well, while edge device management may not be something, the fact that cloud computing space is not fully exploited means there is a lot to do in the cloud space.

Product remote management is especially necessary for the 21st century and beyond. Because of the increasing number of devices connected to the internet of things (IoT), a reliable SaaS platform should, therefore, help with maintaining software glitches from anywhere in the world. From smart homes, stereo speakers, cars, to personal computers, any product that is connected to the internet needs real-time protection from hacking threats such as unlawful access to business or personal data.

Data being the most vital asset is constantly at risk, especially if individuals using edge products do not connect to trusted, reliable, and secure edge device management platforms.

Bridges the Gap Between Complicated Software And End Users

Cloud computing is the new frontier through which SaaS platforms help manage edge devices in real-time. But something even more noteworthy is the increasing number of complicated software that now run edge devices at homes and in workplaces.

Edge device management, therefore, ensures everything runs smoothly. From fixing bugs, running debugging commands to real-time software patch deployment, cloud management of edge products bridges a gap between end-users and complicated software that is becoming the norm these days.

Even more importantly, going beyond physical firewall barriers is a major necessity in remote management of edge devices. A reliable Software-as-a-Service, therefore, ensures data encryption for edge devices is not only hackproof by also accessed by the right people. Moreover, deployment of secure routers and access tools are especially critical in cloud computing when managing edge devices. And so, developers behind successful SaaS platforms do conduct regular security checks over the cloud, design and implement solutions for edge products.

Reliable IT Infrastructure Is Necessary

Software-as-a-service platforms that manage edge devices focus on having a reliable IT infrastructure and centralized systems through which they can conduct cloud computing. It is all about remotely managing edge devices with the help of an IT infrastructure that eliminates challenges such as connectivity latency.

Originally posted here

Read more…

Industrial IoT Revolution

Why the Nvidia Jetson Nano is responsible for the biggest industrial IoT revolution these days

 
c1f0a2_ecaa338269684f82b2661b550075f528~mv2.webp
 
 

It feels like yesterday when the Raspberry Pi foundation released the first-in-line Single Board Computer (SBC) to the market. Back in 2012, Raspberry Pi wasn't alone in the SBC growing market, however, it was the first to make a community-based product that brings the hardware and the software eco-system to a beautiful harmony on the internet. Before those days, embedded Linux based SBC's and SOM's were a place for Linux kernel and embedded hardware experts, no easy-to-use tools, ready Linux based distros, or most importantly without the enormous amount of questions and answers across the internet on anything related.

Today, 8 years later, the "2012 revolution" happens again

This time, it took a year to understand the impact of the new 'kid' in the market, but now, there are a few indications that defiantly build the route to a revolution.

The Raspberry Pi was the first to make embedded Linux easy while keeping the advantages of reliability and flexibility in terms of fitting to different kinds of industries applications. It's almost impossible to ignore the variety of industries where Raspberry Pi is in its hurt of products to save time-to-market and costs. The power of this magical board leans on the software side: The Raspberry Pi foundation and their community, worked hard across the years to improve and share their knowledge, but, at the same time, without notice or targeting, they brought the Pi development to an extremely "serverless" level.

The Nvidia Jetson Nano

Let's stop talking about the Raspberry Pi and focus on today's industry needs to understand better why the new kid in the town is here to change the market of IoT and smart products forever.

 
c1f0a2_2ca55bc3cd744a10a05bc244c4e092c1~mv2.webp
 
 Why do we need to thanks Nvidia and the Jetson Nano?
 

The market is going forward. AI, Robotics, amazing-looking screen app Gui's, image processing, and long data calculations are all become the new standard of smart edge products.

If a few years ago, you would only want to connect your product to the cloud and receive anything valuable, today, product managers and developers compete in a much tougher industry era. This time, the Raspberry Pi can't be the technology hero again, its resources are limited and the eco-system starts to squint to a better-fit solution.

 
c1f0a2_b46f958fa9b543af88a6ad38b2afce82~mv2.webp
 
 

NVIDIA Jetson devices in Upswift.io device management platform

The Jetson Nano is the first SBC to understood the necessary combination that will drive new products to use it. It's the first SBC designed in the mind of industrial powerful use cases, while not forgetting the prototyping stage and the harmony that gave the Raspberry Pi their success. It's the first solution to bring the whole package for developers and for hardware engineers with a "SaaS" feel: The OS is already perfect thanks to Ubuntu, there is plenty of software instructions by Nvidia and open-source ready-to-use tools custom made for the Jetson family, and for the hardware engineers: they are free to go with the System On Module (SOM) that is connected to a carrier board which includes all the necessary outputs and inputs to make the development stage even faster.

The Jetson Nano combination is basically providing the first world infrastructure for producing a "2020" product with complex software while working in a minimal budget and time-to-market. The Jetson Nano enables developers and product managers to imagine further without compromises, bringing tough software missions to the edge easily.

Originally posted here

Read more…

In the era of digitalization, IoT is fostering the upcoming revolution in mobile apps. The ways companies used to provide mobile app development are changing because of IoT. After helping thousands of corporates to deliver extraordinary user experiences, IoT is all set with some new and advanced mobile app development trends. 

The tech world is the one that is continuously evolving. Every year and each day, innovations come to light. Each of them is revolutionizing our lives in one or the other ways. From the first wheel to smart cities, humans have come a long way.

The evolution and foundation of smart cities is the result of IoT or the Internet of Things. IoT has definitely stirred quite an uproar in the digital world with the mass potential it has. It can bring everything and everyone online. 

As per the latest mobile app stats, IoT will become a more significant player in the mobile app development industry. The market share of IoT is going to increase more than double in 2021 with a staggering amount of 520 billion USD. While four years back in 2017, this number was 235 billion USD. 

Soon the IoT mobile app development will face new trends in the coming year and beyond.

Let us take a look at the top IoT mobile app development trends.

IoT App Trend #1: Cybersecurity for IoT

With an increase in the number of devices online, cybersecurity is the top priority for all businesses as IoT gains popularity. The network is expected to expand in the coming years, and so the data volume will also increase. All this draws attention to more information to protect.

IoT security will see an exponential rise as more users will store their data over the cloud. From banking details to home security, everything is easily breached if the security firewall is weak in IoT applications. 

Therefore mobile app development companies need to work upon the up-gradation of their IoT enabled mobile apps. 

IoT App Trend #2: Roaring Popularity of Smart Home Devices

When smart home devices were launched, many mocked them by calling them unrealistic toys for lazy youngsters. Now, the same people are finding it increasingly difficult to resist the charm of IoT devices. 

IoT devices are expected to be very popular in 2021 and the years to come. The reason behind their growing popularity is that the IoT devices are becoming highly intuitive and innovative. They are extended not only to the comfort of home automation but also to home security and the safety of your family.

Another great advantage of implementing smart IoT development adoption is the need to save energy. The intelligent lights or intelligent thermostats help in conserving energy, reducing bills. These reasons will lead to more and more people to adopt smart home devices.

IoT App Trend #3: Backed by AI and ML

Artificial Intelligence and Machine Learning both are thriving technologies. Both of these are the facilitators of automation. We all know how Artificial Intelligence has touched millions of lives around the globe. 

Together with IoT, AI and ML are unique data-driven technologies shaping the future of human-machine interactions. The developers set up a combination of IoT and Artificial Intelligence that helps automate the routine tasks, simplifies work, and gets the most accurate information.

IoT App Trend #4: IoT and Healthcare

With the revolution in the health-tech industry, healthcare companies are turning towards mobile platforms. IoT enabled apps to open up new opportunities to improve the medical sector.

IoT has immense applications that are already running in the healthcare field and is expected to increase by 26.2% 

Healthcare apps featuring IoT technology are expected to reform the world of medical sciences. These IoT mobile apps can even help doctors and medical professionals treat their patients even from a distance.

Smart wearables and implants will be able to record diverse parameters to keep the patient’s health in check. By integrating sensors, portable devices, and all kinds of medical equipment, real-time updates of a patient’s health can be recorded and sent to the concerned person. 

IoT App Trend #5: Edge Computing to Overtake Cloud Computing

This is a change where we have to be careful. For the past many years, IoT devices have been storing their data on cloud storage. However, the IoT developers, development services, and manufacturers have started thinking about the utility of storing, calculating, and analyzing data to the limit.

So basically this means, in place of sending the entire data from IoT devices to the cloud, the data is first transmitted to a local or nearer storage device located close to the IoT device or on the edge of the network. 

This local storage device then analyzes, sorts, filters and calculates the data and then sends all or only a part of the data to the cloud, reducing the traffic on the network avoiding any bottleneck situation.

Known as “edge computing”, this approach has several advantages if used correctly. Firstly, it helps in the better management of the large amount of data that each device sends. Second, the reduced dependency on cloud storage allows devices and applications to perform faster and also reduce latency.

Being able to collect and process data locally, the IoT application is expected to consume lesser bandwidth and work even when connectivity to the cloud is affected. After seeing these positive aspects, state-of-the-art computing is looking forward to better innovation and broad adoption in IoT, both consumer and industrial.

Reduced connectivity to the cloud will also result in fewer security costs and facilitate better security practices. 2021 will see better state-of-the-art IT in IoT.

IoT App Trend #6: Are You Excited About Smart Cities?

Well, all of us are super excited to witness smart cities. Smart cities are one of the significant accomplishments of IoT and modernization. Integrated with IoT-powered devices, smart cities promise improved efficiency and security for the common folk on the streets and inside their homes.

With superfast data transfer supported by 5G, public transportation will also see a massive change in the way they work. 

By now, we know that IoT will focus on developing smart parking lots, street lights, and traffic controls. To add up to this, with IoT and fast internet, we will live inside a world where our refrigerators will be aware of what food we have inside.

IoT will impact traffic congestion and security. It will also help in the development of sustainable cities leading us to a green future.

IoT App Trend #7: Blockchain for IoT Security

Many financial and governmental institutions, entrepreneurs, consumers as well as industrialists will be decentralized, self-governing, and be quite smart. Most of the new companies are seen building their territory on the entanglement of IOTA to develop modules and other components for firms without the cost of SaaS and Cloud.

IOTA is a distributed ledger especially designed to record and execute transactions between devices in the IoT ecosystem.

If you are in this industry, then you should prepare to see the centralized and monolithic computer models that are separated in the jobs and microservices. All this will be distributed to decentralized machines and devices. 

In the coming future, IoT will penetrate the disciplines of health, government, transactions, and others that we cannot think of right now. Such types of IoT technology trends will create significant effective differences.

IoT App Trend #8: IoT for Retail Apps

The eCommerce industry will also get benefited from IoT integration. Retail supply change will be more efficient after the incorporation of IoT mobile apps. It is expected to improve the online shopping experience for individuals across the globe.

Also, IoT will make the retail experience more personalized for each customer with in-app advertisements based on the user’s shopping history. We already get notifications once we purchase a product from a particular eStore. With IoT enabled mobile apps, the app will guide us to our favorite store using in-site maps.

IoT App Trend #9- Will IoT Boost Predictive Maintenance?

Yes, it will. In 2021 and beyond, the smart home system will notify the owner about plumbing leaks, appliance failures, or any other problem so that the house owner can avoid any disaster. Soon these intelligent sensors will enter our houses.

In response to these predictive skills of IoT, we can expect to see home care offers as a contractor service. If there will be a need for any emergency action, your presence in the house will not be necessary. 

IoT App Trend #10: Easy and Better Commuting

IoT mobile applications are expected to make commuting easier for students, the elderly, the business person, and many more. Today, due to heavy traffic, commuting is a significant issue for most of us. With major innovations in technology and integration of IoT, mobile applications will make traveling a breeze for everyone.

Here are some of the conventional ways that commuting will change:

  • Smart street lights will make walking on the road safe for pedestrians
  • Finding parking spaces will be a lot easier and seamless with data-driven parking apps. 
  • In-app navigation and public transportation will definitely make public transit more reliable 
  • IoT powered mobile apps will also improve routing between different modes of transfer.

With so many innovative ideas and benefits for iOS and android based IoT mobile apps, the mobile app development market will see an influx of transportation apps in the years to come.

IoT App Trend #11: Sustainable-as-a-Service Becomes the Norm.

While talking about the IoT trends, SaaS or Sustainable-as-a-Service is considered as one of the hot topics for the estimated market. Because of the low cost of entry, SaaS is quickly getting to the top list for being the favorite firm in the IT gaming sector. 

Out of these emerging technological IoT trends, Software-as-a-service will make the lives of people better than ever.

IoT App Trend #12- Energy and Resource Management 

Do you know what affects energy management the most? Well, energy management majorly depends on the acquisition of a better understanding of how to consume resources. IoT mobile app-based electronics are expected to play a significant role in the conservation of energy. 

All of these IoT trends can be integrated into resource management, making lives more accessible, more comfortable, and responsible.

Automatic notifications can also be added to the mobile app in order to send information to the owner in case the power threshold exceeds. Various other fancy features can also be added to these IoT mobile apps such as sprinkler control, in-house temperature management, etc.

Conclusion

We all know that IoT has great potential to bring revolutionary changes in the present mobile app development industry trends. It is expected to open up immense possibilities for every business or individual related to this field. Directly or indirectly, IoT will drive the future of almost every industry.

The above mentioned are some of the trends that will dominate the IoT app development ecosystem in the years to come. Amid all these predictions and trends, the future is promising and worth the wait. 

 

 

 

 

Read more…

Industrial Prototyping for IoT

I-Pi SMARC.jpg

ADLINK is a global leader in edge computing driving data-to-decision applications across industries. The company recently introduced I-Pi SMARC for Industrial IoT prototyping.

-       AdLInk I-Pi SMARC consists of a simple carrier paired with a SMARC Computer on Module

-       SMARC Modules are available from entry level PX30 Rockchip to top of the line Intel Apollo Lake.

-       SMARC modules are specifically designed for typical industrial embedded applications that require long life, high MTBF and strict revision control.

-       Use popular off the shelve sensors and create prototypes or proof of concepts on short notice.

Additional information can be found here

 

Read more…

If I had to choose three reasons why the adoption of the IoT it´s delayed several years, one of the three would include would be the mistake in their strategy, faith, IoT employee sales skills and poor investment in key industries by Mobile Network Operators (MNOs) in this business.

When I wrote more than 5 years ago my post “How to select your M2M/IoT Service Provider” I referenced several annual reports from analysts like Gartner and vendors like Ericsson or Cisco. All of them presented very optimistic predictions that unfortunately have not been fulfilled.

During this time Mobile Network Operators have adapted to the market crude reality of the market with sometimes erratic strategies. Despite this fact has not discouraged new entrants that have energized a market with again high growth expectations. Today Tier 1 and Tier 2 Mobile Network Operators are competing with many IoT Connectivity providers in all industries and use cases. The good news for these new entrants is that the MNOs have not known captivate their customers.

What do I think the MNOS are thinking now?

1-    The Technological Battle of LPWAN networks

I do not want to open in this article a debate on which LPWAN connectivity technology (5G, NB-IoT, LTE-M, LoRA, Sigfox, ….) is the best. Each of these technologies will likely play an important role in the IoT space depending on the use case, so understanding the features and differences of each is critical.

You must not forget other IoT connectivity technologies (Satellite, Mesh networks, WiFi, Zigbee,..). I have always championed the idea of multiple IoT network coexistence in which objects will connect to provide an IoT service or be part of an aggregated IoT service. And those services can be provided by both licensed and unlicensed cellular networks. Let's assume that we will not have a single protocol that regulates all of them in a long time. We are also not going to ask manufacturers of objects to incorporate the different connectivity possibilities in their designs for obvious reasons of cost and battery life. What would be very valuable is that all IoT devices could add a unique identifier that allow will be part of a SuperIoTNet that works like the current internet. But now is future fiction.

2-    The Connectivity Services Offering 

Ideally we should try to find in our IoT Connectivity Service Provider offering something like Telefonica, an end-to-end complete commercial IoT connectivity offer that allow design and build a tailored secure IoT solution. But this in not gold all that glitters. We must evaluate the ability of these IoT Connectivity Service Providers to make easy the adoption of IoT in Small and Medium Business (SMBs) with pre-integrated industry solutions based on a rich ecosystem.

Customers wants to receive specialised advice to solve any IoT need at a one-stop-shop, including full stack technology solutions from hardware selection to middleware, application development and SaaS operations. Not many IoT Connectivity Providers have the internal resources to provide these services, in that cases customers should involve either or a partner or better an independent consultant as myself.

For some customers an offering like “IoT connectivity as a Service” provided by Arkessa can be an advantage, for others “The 1NCE IoT Flat Rate”, an all-inclusive connectivity package that comprises all elements and features that IoT customer need while having their assets connected is more important. For experienced M2M customers, the portfolio Kore Wireless and industry specialization is attractive. Eseye for instances solve your IoT challenges from device to AWS cloud. In Europe SMBs must consider in the short list Wireless Logic with 4 million devices connected to its platforms globally. Special mention to module companies like Sierra Wireless that offers a Connectivity and Device Management service that connects to 600+ partner networks around the globe with multiple redundant routes in every country to eliminate local coverage gaps or Telit which  Connectivity Service allow companies Monitor, Manage & Monetize their assets.

I am expecting the unlimited opportunities with the Internet of Things after the announcement a few days ago by DT Deutsche Telekom to spin out IoT unit and launch a global open ‘hub.’  More info about new DT IoT offering here: “From vertical to horizontal and back to vertical: our way to the new horizon”

Sorry, I can not extend this paragraph with more companies, but in the picture there are many other companies with attractive services that must be considered for your unique Business case.

3-    eSIM: Threat or Opportunity

The SIM card has also been evolving since its creation in 1991. From the size of a credit card it went to mini-SIM or the classic SIM that began to reduce in size, first to microSIM and then to nanoSIM and finally the embedded SIM (also called eSIM or eUICC or MMF2 UICC).

Presented in the preludes of the Mobile World Congress 2016, the eSIM is still a SIM but it will be embedded in the devices, without the possibility of withdrawing it. eSIM is a global specification by the GSMA which enables remote SIM provisioning of any mobile device. The eSIM is designed to remotely ​manage multiple mobile network operator subscriptions and be compliant​ with GSMA's Remote SIM Provisioning specifications​.  Install one eSIM during manufacturing and change the carrier on the fly.

To date, 200 mobile carriers in more than 80 countries offer eSIM consumer services. The embedded UICC is expected to reach over 200 million shipments in 2019 (source: Eurosmart, November 2019).

GSMA promises not to rig the eSIM standard in favour of its members.

eSIM now allows consumers to store multiple operator profiles on a device simultaneously, and switch between them remotely, though only one can be used at a time. The specification now extends to a wider range of devices. Manufacturers and operators can now enable consumers to select the operator of their choice and then securely download that operator’s SIM application to any device.

At first glance, building or supporting a global eSIM solution presents a major challenge (integration with other service providers and guarantee customer experience is expensive) and not appear to benefit Communication Service Providers. Looks like stupid to invest in a solution that make easier for customers to leave them. That´s why they have not done much to extend its use.

Why is good for IoT?.  UICC and eSIM technology gives enterprises control of IoT connectivity, simplifies international deployments of IoT devices and the transition to mobility services. Large scale international deployments are possible using a single factory installed SIM. The user subscription can be updated when the device is in the field.

ARM white paper introduces 7 top  Innovative eSIM use cases: Automotive, Shipping and Logistics, Object tracking and site monitoring, Smart Energy, Wearables, Agriculture, Home Security.

Sources:

GSMA: https://www.gsma.com/esim/

Cisco Blog: “Manufacture there, connect anywhere: Cisco eSIM Flex enables global connectivity for enterprises and service providers”

Xataka: https://www.xatakamovil.com/conectividad/esim-que-que-ventajas-aporta-cuando-llegara-masivamente-todo-tipo-dispositivos

Thales: https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/connectivity/esim/esim

Arkessa: https://www.arkessa.com/euicc/

ARM:  7 Top eSIM use cases

Choosing IoT Connectivity Service Providers

Choosing the right IoT Connectivity Service provider is not as easy as many can think. You can make a preselection using the lasts Gartner Magic Quadrant, also explore the local cellular Operators that have deployed a NB-IoT or LTE-M network and finally analyze other operators that maybe you never heard about them as I did.

The selection of the right IoT Connectivity Service Provider is a strategic decision for any Digital Transformation initiative, especially in enterprises adopting new resilient business models and optimizations of business processes. Some criteria you must consider selecting  your IoT CSP are:

  • Your internal capabilities
  • The offering: IoT Connectivity Services / IoT Managed Connectivity Services / IoT Connectivity Security Service / eSim Services
  • The cost of the IoT Connectivity Services and the flexibility of the tariffs
  • The type of IoT networks they have deployed and the coverage
  • The alliances with other IoT Connectivity Service Providers for global deployments
  • The types of M2M/IoT certified devices / modules and their applicability to your use cases.
  • The experience and references in your industry and vertical solution
  • The capabilities of their IoT Connectivity and Device Management Platforms
  • Open APIS for Integration with your Enterprise Systems
  • BSS/OSS systems and their applicability to your use
  • New business models eg IOTConnectivity as a Service
  • Levels of Support
  • Ecosystem of partners

Key Takeaways

It is not worth spending one minute more crying for the reasons that MNOs were unable to energize the IoT market earlier. We are where we are and the future is still bright, for those who really know how to see it.

The selection of the right IoT Connectivity Service Provider for your enterprise is a strategic decision. When my clients ask which is the best IoT Connectivity Service Provider? my first advice is: ". Let's define together your digital strategy, prioritize key uses cases, analyze new business model and your internal capabilities first and then work on the IoT Connectivity technology needed , which connectivity services comply with your requirements  and finally build a detailed business case that justify the value of your investment".

There is no best IoT connectivity Technology. It all depends on the use cases and the business model.

Read more…

Helium Expands to Europe

Helium, the company behind one of the world’s first peer-to-peer wireless networks, is announcing the introduction of Helium Tabs, its first branded IoT tracking device that runs on The People’s Network. In addition, after launching its network in 1,000 cities in North America within one year, the company is expanding to Europe to address growing market demand with Helium Hotspots shipping to the region starting July 2020. 

Since its launch in June 2019, Helium quickly grew its footprint with Hotspots covering more than 700,000 square miles across North America. Helium is now expanding to Europe to allow for seamless use of connected devices across borders. Powered by entrepreneurs looking to own a piece of the people-powered network, Helium’s open-source blockchain technology incentivizes individuals to deploy Hotspots and earn Helium (HNT), a new cryptocurrency, for simultaneously building the network and enabling IoT devices to send data to the Internet. When connected with other nearby Hotspots, this acts as the backbone of the network. 

“We’re excited to launch Helium Tabs at a time where we’ve seen incredible growth of The People’s Network across North America,” said Amir Haleem, Helium’s CEO and co-founder. “We could not have accomplished what we have done, in such a short amount of time, without the support of our partners and our incredible community. We look forward to launching The People’s Network in Europe and eventually bringing Helium Tabs and other third-party IoT devices to consumers there.”  

Introducing Helium Tabs that Run on The People’s Network
Unlike other tracking devices,Tabs uses LongFi technology, which combines the LoRaWAN wireless protocol with the Helium blockchain, and provides network coverage up to 10 miles away from a single Hotspot. This is a game-changer compared to WiFi and Bluetooth enabled tracking devices which only work up to 100 feet from a network source. What’s more, due to Helium’s unique blockchain-based rewards system, Hotspot owners will be rewarded with Helium (HNT) each time a Tab connects to its network. 

In addition to its increased growth with partners and customers, Helium has also seen accelerated expansion of its Helium Patrons program, which was introduced in late 2019. All three combined have helped to strengthen its network. 

Patrons are entrepreneurial customers who purchase 15 or more Hotspots to help blanket their cities with coverage and enable customers, who use the network. In return, they receive discounts, priority shipping, network tools, and Helium support. Currently, the program has more than 70 Patrons throughout North America and is expanding to Europe. 

Key brands that use the Helium Network include: 

  • Nestle, ReadyRefresh, a beverage delivery service company
  • Agulus, an agricultural tech company
  • Conserv, a collections-focused environmental monitoring platform

Helium Tabs will initially be available to existing Hotspot owners for $49. The Helium Hotspot is now available for purchase online in Europe for €450.

Read more…
RSS
Email me when there are new items in this category –

Sponsor