Join IoT Central | Join our LinkedIn Group | Post on IoT Central


automation (9)

The manufacturing industry is on the brink of a transformative journey with the integration of 5G technology. As we step into the future, the powerful combination of 5G and the Internet of Things (IoT) is revolutionizing the manufacturing landscape, promising unparalleled levels of efficiency, innovation, and success. The potential for growth is immense, as indicated by the projected expansion of the global 5G in the manufacturing market. According to a report by Global Market Estimates, the market is expected to experience a remarkable compound annual growth rate (CAGR) of around 27.5% during the forecast period from 2021 to 2026. The momentum continues to build, with another study conducted by Allied Market Research revealing that the global industrial 5G market's value reached $12.47 billion in 2020 and is projected to surge to an astounding $140.88 billion by the year 2030, growing at the same impressive CAGR of 27.5%. This surge in demand and implementation of 5G technology is set to redefine manufacturing operations, unleashing a new era of connectivity, data-driven decision-making, and technological advancement in the industry.

Let's explore the game-changing areas where 5G is shaping manufacturing:

  • Enhanced Automation and Robotics: Brace yourself for a world where machines, robots, and control systems communicate seamlessly in real time. With the lightning-fast speed and ultra-low latency of 5G, automation reaches new heights. Human operators collaborate harmoniously with their mechanical counterparts, driving productivity to soaring levels and creating a manufacturing ecosystem buzzing with flawless precision.
  • IoT Expansion: Prepare to be captivated by the power of connectivity as 5G and IoT converge. An interconnected web of devices and sensors revolutionizes manufacturing environments. Real-time data flows effortlessly, empowering manufacturers with unparalleled insights into production processes, equipment performance, and inventory levels. Welcome to the era of smart factories and a thriving industrial IoT ecosystem where innovation knows no boundaries.
  • Real-time Analytics and Predictive Maintenance: Unlock the door to real-time analytics with 5G's extraordinary bandwidth and lightning-fast transmission. Advanced algorithms analyze production data on the spot, equipping manufacturers with invaluable insights. Witness the magic of predictive maintenance strategies that detect and address potential equipment failures before they disrupt operations. Say goodbye to downtime, watch maintenance costs plummet, and witness equipment performance reach peak efficiency.
  • Remote Operations and Monitoring: Embrace a paradigm shift as 5G propels us into the era of real-time remote control and monitoring. Manufacturers gain the power to oversee and manage operations from anywhere on the globe. Multiple production sites become effortlessly manageable, critical information is at your fingertips, and operational streamlining becomes second nature. Flexibility reigns supreme, decisions are lightning-quick, and the need for on-site personnel diminishes, optimizing resources and reducing costs.
  • Augmented Reality (AR) and Virtual Reality (VR) Integration: Immerse yourself in a new manufacturing era as 5G unleashes the full potential of AR and VR. Experience lightning-fast speeds and ultra-low latency as AR glasses guide workers through assembly processes troubleshoot with ease, and perfect quality control in real-time. Witness accuracy soaring, errors vanishing, and worker productivity reaching unparalleled heights.
  • Supply Chain Optimization: Let 5G permeate your supply chain, igniting a transformative revolution. Real-time connectivity, data sharing, and analytics illuminate supply chain visibility like never before. Bid farewell to stockouts and delays as inventory tracking becomes a breeze, logistics management reaches new heights of efficiency, and distribution networks optimize with precision. Elevate inventory management and delight customers with enhanced satisfaction.

12214206065?profile=RESIZE_710x

Here is a more detailed explanation of using 5G for real-time quality monitoring in medical device manufacturing:

Real-Time Quality Monitoring with 5G

Maintaining rigorous quality control is crucial in medical device manufacturing to ensure patient safety. However, traditional testing and inspection processes can be time-consuming, costly, and unable to catch all defects. 5G enables real-time quality monitoring by connecting production equipment with smart sensors and analytics.

With 5G, sensors can stream massive amounts of real-time data on product specifications, equipment performance, environmental conditions, and more. 5G's high bandwidth and low latency allow huge volumes of sensor data to be transferred continuously without lag.

This data feeds into edge devices running advanced analytics algorithms. The algorithms identify anomalies, detect deviations from quality parameters, and predict potential defects. Operators are notified of issues for immediate corrective action.

For example, vibration sensors may reveal the out-of-tolerance operation of a cutting tool indicating impending tool failure. Temperature probes may show unacceptable fluctuations in a curing oven negatively impacting material properties. These insights can prompt remedial measures before defective products are created.

5G-enabled real-time monitoring provides a holistic view of production quality. It shifts quality control from periodic testing to proactive prevention by enabling predictive capabilities. This allows medical device manufacturers to achieve significant improvements in product quality, output, and compliance with regulatory standards.

The manufacturing industry is reaching new pinnacles of greatness as we move forward into the future with 5G steering the ship. Leverage the power of 5G technology to gain a competitive advantage, respond quickly to changing demands in the market, and deliver products with an efficiency that is unmatched by any other method. Join the manufacturing revolution, and you will be able to observe the growth of invention, the ascent of efficiency, and the unbounded expansion of success.

 

References:

https://www.globalmarketestimates.com/market-report/5g-in-manufacturing-market-3566

https://www.alliedmarketresearch.com/industrial-5g-market-A11659

Read more…
Industrial automation and controls modernization can be a daunting task. Is it time to upgrade? What will this cost me? Are we ready? How will we even do this? There is a lot to consider with all those questions, and probably more, running through your head. A good starting point for developing a plan is to start by organizing the information that needs to be gathered to scope the project(s). From there, you can start talking to integrators and vendors to get pricing, budgets, timelines, and equipment lists. To develop a thorough spec, follow these steps.
Read more…

When you have the responsibility of ensuring a manufacturing plant is operating at its full potential at all times, talk of “Industry 4.0” and “industrial automation like never before” might be exciting but far-fetched. Industry 4.0 is just an empty phrase used by marketers who want to take your money, right?

Maybe in some cases, but the ideas behind the buzzy terms can actually give you an edge over competitors. Industry 4.0 is not a phase, but it’s also not an obligation that you need to “opt in to” 100% right away.  Industrial automation is a combined result of our greater digital capacities, smarter machines, and improved cross-channel communication that have accompanied the digital age.

In 2019, the technology is here: from decentralized cloud systemsto self-correcting and self-directing machines. However, it’s not everywhere yet, and most plants are simply taking baby steps towards preparing their lines to be as compatible as possible to these new technologies so that they can gradually work their way in. Industry is slowly moving towards a more optimized, efficient, automated structure, but this transition will be happening in the industrial world over the next few decades.

What do those “baby steps” look like? Where should begin to optimize lines in the most cost-effective, long-term ROI benefits?  We have compiled a list of 5 relatively simple ways you can take this year to set your plant up for new “Industry 4.0” industrial automation technologies:

1. Integrate a Single Virtual Server

Managing the IT aspect of your plant is difficult when you need to find cost-effective storage and data processing solutions for your company that also comply with all of the regulations and contingencies of your industry. However, upgrading a server to a virtual option is probably the most important upgrade you can do to get started on the road to future industrial automation applications that use a truly decentralized communication with virtual operating system.

If your plant currently runs exclusively on physical servers, you don’t need to go virtually all at once. The wonderful thing about industry 4.0 is that much of the software integrations available will integrate with your existing hardware. You can invest in one virtual server, and then layer software integrations on to it over time.

By starting with a single server, you can cut costs, maintain a realistic learning/adaptation curve, and try out a virtual server option without committing 100% to a change. There are numerous virtual server options available, so talk to a process automation expert about what server will work best for your plant, and which server to upgrade first.

2. Get Basic Industrial Automation Security – Two-Factor Authentication

With increased adaptability and communication on virtual servers comes increased cyber threats, and unfortunately, there is no way around this. One of the easiest and fastest upgrades you can do for your company is to implement two-factor authentication (2FA) for all employees. A simple password is no longer anywhere near secure enough to protect your employees and your data.

Luckily, everything from Twitter to Cloud servers now offer 2FA options, it’s usually just a question of getting the settings implemented correctly and creating a protocol that requires every employee to use 2FA at all times. It may seem tedious or frustrating at first, but this is a small habit that can make a huge difference in your cyber security and overall functioning of your plant.

3. Make Your Next Machine Purchase a Smart Machine

You probably aren’t yet at the point of having a completely automated assembly line of smart machines that create highly customized orders while communicating with and correcting each other (like the assembly line in this German plant.) However, smart machines do exist, and if you are getting ready to purchase a new machine, finding one that has automation, optimization, and decentralized communication abilities will be a great investment in your plant’s future.

Customizable “smart machines” are virtually independent of a human operator. The ability of these machines to adapt to the demands of individualized production requirements allows for scalable, lean production processes. In other words, with these new machines, you can produce a larger variety of products faster than ever before.

If your current machines are working fine, there is no need to replace them with smart machines right away. But from this point forward, it is a good idea to consider buying a smart machine for your next upgrade. Don’t be afraid to use an automation integrator to advise you on the appropriate machine, technology, and compatibility with existing plant automation systems.

4. Implement Technology Upgrades that Overlay or Automatically Integrate Existing Plant Industrial Automation

Be choosy about the automation products you decide to implement into your current systems moving forward. You want applications that both set your systems up for future technology integrations and help move you away from expiring legacy applications.

This shouldn’t mean replacing all your old applications, programming, and platforms all at once other. Most Industry 4.0 automation tools are created in an “overlay” style, meaning they are created to be able to function on top of your existing processes and are not supposed to disrupt everything you have already built.

Embracing a new software or system should never mean that you have to throw away your existing processes and start from scratch. If this is how you feel when you are getting ready to purchase a new software, machine, or server then it probably isn’t the right product for your company.

Talking to an expert about what products will work best with your current setup is a good idea before making any changes to your industrial automation. At my company, EPIC systems, we've seen the difference that selecting the right product solutions has made for hundreds of process automation projects — it's a key step for any manufacturing plant. No matter who you work with, you don't want to bypass this step.

5. Optimize One of Your Plant’s Processes

Divide and conquer, as they say. Just as it is best to upgrade one server at a time, it is helpful to focus specifically on one plant process at a time when you are looking to optimize and automate your plant.

This could mean focusing on optimizing your shipping procedure or optimizing one assembly process. The important thing to remember is that as you do this “experimental optimization” you are not just looking for an impressive return on investment, you are also looking to get your entire team comfortable with the automation and ready to embrace even more. This is why the “how” is just as important (if not more important) than the “what” when it comes to choosing a process to optimize. Go slow, be transparent, and include everyone in the process so that it is a success all around.

Industry 4.0 is creating a world where employees can delegate mundane tasks to smart machines and rely on highly communicative, agile systems in order to work faster and more effectively than ever before. There is no reason for any manufacturing plant to be left behind in this industrial evolution, with numerous products and services available to help walk you through the industrial automation process gradually and intelligently.

Read more…

Iot and IIoT has made it a long way in the past several years. In fact, according to Forbes, trillions of dollars are at stake as the Industrial Internet of Things rolls out over the next decade. But, has the multi-tillion dollar trend lived up to the hype?

It could be many more years until certain industries reach the levels described in the hype.  Here’s the industries you should keep your eye on when it comes to IIoT technology.

The Internet of Things and the Industrial Internet of Things (IoT and IIoT, respectfully), widely encompasses many concepts, technologies, and products, but can generally be described as:

  • A system that contains wired or wirelessly connected components which relay data that can be analyzed or used to control an output of the system
  • A network that allows for automated information exchange between two devices
  • A vision where any and all systems are connected to gather masses of data that will lead to overall improved performance, insights, and control

As of 2018, we most commonly see IoT being used for location tracking, remote monitoring, and preventative maintenance.  Yet, for IIoT the most common application is preventative maintenance. Many of these IIoT systems report back to a control interface, and are not completely automated control loops that are self-evaluating or self-improving.

 

There are some industries in particular that stand out when looking at the IIoT.  We looked at trends that will progress through the end of 2018 into 2019, and asked the following questions.

  1. What industries will be most affected by IoT solutions?

According to BI Intelligence, the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries have received the highest amount of investment in IoT to date.  These investments, totaling $230B between the two industries over the past few years, will continue to drive impressive progress in the development of IoT solutions. 

  1. Who will be the key players in IIoT Solutions in 2019?

We are currently witnessing a race to capture the IIoT market.  AT&T is collaborating with Honeywell, Verizon offers a machine-to-machine (M2M) management platform called ThingSpace, and startups like Uptake Technologies are raising absurd amounts of capital to compete with existing analytics giants. Uptake alone has raised $218M since 2015, and specializes in analytics of complex data sets. 

Nearly all of the corporate giants you would expect to have a stake in the race are putting serious resources behind their efforts.  GE is offering Predix, and end-to-end Industrial IoT Platform, and has incorporated capabilities like Predix Edge to allow for edge computing within the platform.  Siemens offers their own Industrial IoT platform called MindSphere, and Bosch is also getting in on the action now offering their IoT Suite publicly available on AWS Marketplace. Further, Schneider Electric developed WonderWare and SAP offers Hana.

We expect that through 2019 we will see more partnerships develop, offering cross compatibility between the many platforms which are available today.

  1. What further developments in IIoT can we expect in the near future?

Security will continue to be a major focus for all providers and users of the IIoT.   In a recent publication Steve Watson, CEO of VTO Labs, explains “security and specifically the ability to detect compromised nodes, together with collecting and preserving evidences of an attack or malicious activities emerge as a priority in successful deployment of IoT networks.” This ability to detect and preserve evidence of a cyber-attack will not only need to occur through edge computing, but it will also need to be maintain its integrity with interoperability of different systems that are linked together.

Given the amount of investment we are seeing in the ‘Manufacturing’ and ‘Transportation and Warehousing’ industries we expect to see many breakthroughs in both cyber security for the IIoT and interoperability between the many IIoT platforms. Looking into 2019 we can expect to see more partnerships between major sensor providers and network providers, such as the AT&T Honeywell collaboration we saw in 2018. With more interoperability and collaboration, 2019 may be the year that we see the major breakthroughs in IIoT we’ve been expecting.

 

About the Author: Taylor Welsh is a writer for a Speedtronic reseller, located in Fuquay-Varina, NC. To see more, visit AX Control.

Read more…

For more than a century, advances in technology, machinery and automation have oftentimes replaced humans as a means to accomplish tasks. In this podcast, Rob Tiffany tackles the unsavory topic of workforce reduction as certain tasks have evolved from manual to mobile to IoT.

Listen to the Podcast 

 

Read more…

2023754?profile=original

Tibbo Project System (TPS) is a highly configurable, affordable, and innovative automation platform. It is ideal for home, building, warehouse, and production floor automation projects, as well as data collection, distributed control, industrial computing, and device connectivity applications.

Suppliers of traditional “control boxes” (embedded computers, PLCs, remote automation and I/O products, etc.) typically offer a wide variety of models differing in their I/O capabilities. Four serial ports and six relays. Two serial ports and eight relays. One serial port, four relays, and two sensor inputs. These lists go on and on, yet never seem to contain just the right mix of I/O functions you are looking for.

Rather than offering a large number of models, Tibbo Technology takes a different approach: Our Tibbo Project System (TPS) utilizes Tibbits® – miniature electronic blocks that implement specific I/O functions. Need three RS232 ports? Plug in exactly three RS232 Tibbits! Need two relays? Use a relay Tibbit. This module-based approach saves you money by allowing you to precisely define the features you want in your automation controller.

Here is a closer look at the process of building a custom Tibbo Project System.

 

Start with a Tibbo Project PCB (TPP)

2023772?profile=original

 

 

 

A Tibbo Project PCB is the foundation of TPS devices.

Available in two sizes – medium and large – each board carries a CPU, memory, an Ethernet port, power input for +5V regulated power, and a number of sockets for Tibbit Modules and Connectors.

 

Add Tibbit® Blocks

tumblr_inline_o0sdb7JQqK1qa8p5v_540.jpg

Tibbits (as in “Tibbo Bits”) are blocks of prepackaged I/O functionality housed in brightly colored rectangular shells. Tibbits are subdivided into Modules and Connectors.

Want an ADC? There is a Tibbit Module for this. 24V power supply? Got that! RS232/422/485 port? We have this, and many other Modules, too.

Same goes for Tibbit Connectors. DB9 Tibbit? Check. Terminal block? Check. Infrared receiver/transmitter? Got it. Temperature, humidity, and pressure sensors? On the list of available Tibbits, too.

 

Assemble into a Tibbo Project Box (TPB)

tumblr_inline_o0sdd7G0VI1qa8p5v_540.jpg

Most projects require an enclosure. Designing one is a tough job. Making it beautiful is even tougher, and may also be prohibitively expensive. Finding or making the right housing is a perennial obstacle to completing low-volume and hobbyist projects.

Strangely, suppliers of popular platforms such as Arduino, Raspberry Pi, and BeagleBone do not bother with providing any enclosures, and available third-party offerings are primitive and flimsy.

Tibbo understands enclosure struggles and here is our solution: Your Tibbo Project System can optionally be ordered with a Tibbo Project Box (TPB) kit.

The ingenious feature of the TPB is that its top and bottom walls are formed by Tibbit Connectors. This eliminates a huge problem of any low-volume production operation – the necessity to drill holes and openings in an off-the-shelf enclosure.

The result is a neat, professionally looking housing every time, even for projects with the production quantity of one.

Like boards, our enclosures are available in two sizes – medium and large. Medium-size project boxes can be ordered in the LCD/keypad version, thus allowing you to design solutions incorporating a user interface.

 

Unique Online Configurator

To simplify the process of planning your TPS we have created an Online Configurator.

Configurator allows you to select the Tibbo Project Board (TPP), “insert” Tibbit Modules and Connectors into the board’s sockets, and specify additional options. These include choosing whether or not you wish to add a Tibbo Project Box (TPB) enclosure, LCD and keypad, DIN rail mounting kit, and so on. You can choose to have your system shipped fully assembled or as a parts kit.

Configurator makes sure you specify a valid system by watching out for errors. For example, it verifies that the total power consumption of your future TPS device does not exceed available power budget. Configurator also checks the placement of Tibbits, ensuring that there are no mistakes in their arrangement.

Completed configurations can be immediately ordered from our online store. You can opt to keep each configuration private, share it with other registered users, or make it public for everyone to see.

 

Develop your application

tumblr_inline_o0sdfgvt6R1qa8p5v_540.jpg


Like all programmable Tibbo hardware, Tibbo Project System devices are powered by Tibbo OS (TiOS).

Use our free Tibbo IDE (TIDE) software to create and debug sophisticated automation applications in Tibbo BASIC, Tibbo C, or a combination of the two languages.

To learn more about the Tibbo Project System click here

Read more…

OPC Server from Tibbo Technology

OPC – «Open Platform Communications» – is a set of standards and specifications for manufacturing telecommunication. OPC specifies the transfer of real-time plant data between control devices from various producers. OPC was designed to process control hardware and support a common bridge for Windows-based software applications. OPC was aimed to reduce the number of duplicated effort performed by hardware manufacturers and their software partners.

 

The most typical OPC specification, OPC Data Access (OPC DA), is supported by Tibbo OPC Server. Any device compatible with the Tibbo AggreGate protocol can be a data source. AggreGate is a white-label IoT integration platform using up-to-date network technologies to control, configure, monitor and support electronic devices, along with distributed networks of such electronic devices. It also helps you collect device data in the cloud, where you can slice and dice it in alignment with your needs. In addition, the platform lets other enterprise applications transparently access this data via the AggreGate server.

Tibbo OPC server has embedded AggreGate network protocol. It can both interact with any Tibbo devices via AggreGate agent protocol and connect to AggreGate server. The AggreGate agent protocol open-source solution is published for Java, C#, and C++ programming languages, so your connection scheme is not restricted to AggreGate server  or Tibbo devices only.

 

Examples

A simple example: TPS reads Tibbit #29 (Ambient temperature meter) and forwards data to OPC server via AggreGate agent protocol.

A more complex example: we have a Windows-based PC controlling a wood processing machine by means of AggreGate server through the Modbus protocol. If Tibbo OPC server is linked with AggreGate server, the data from the machine is sent to Tibbo OPC server, and therefore, we can operate and monitor the machine via any OPC client.

Technical Specification

  • Compatibility with Windows XP/2003 or later (Microsoft Visual C++ 2013 redistributable is required - installed automatically)

  • Support of DA Asynchronous I/O 2.0 and Synchronous I/O with COM/DCOM technology

Tibbo OPC Server transmits the information on the Value, Quality and Timestamp of an item (tag) to the OPC Client applications. These fields are read from the AggreGate variables.

 

The process values are set to Bad [Configuration Error] quality if OPC Server loses communication with its data source (AggreGate Agent or AggreGate Server). The quality is set to Uncertain [Non-Specific] if the AggreGate variable value is empty.

In the following chart below you can see a concordance table of the AggreGate variables and the OPC data types:

AggreGate Data Type OPC Data Type
INTEGER VT_I4
STRING VT_BSTR
BOOLEAN VT_BOOL
LONG VT_I8
FLOAT VT_R4
DOUBLE VT_R8
DATE VT_DATE
DATATABLE OPC VT_BSTR (by default)
COLOR VT_I4
DATA VT_BSTR

To learn more about Tibbo OPC server, click here

Read more…

Sponsor