Join IoT Central | Join our LinkedIn Group | Post on IoT Central


iot platform (11)

The Internet of Things (IoT) continues to revolutionize industries, and Microsoft Azure IoT is at the forefront of this transformation. With its robust suite of services and features, Azure IoT enables organizations to connect, monitor, and manage their IoT devices and data effectively. In this blog post, we will explore the latest trends and use cases of Azure IoT in 2023, showcasing how it empowers businesses across various sectors.

Edge Computing and AI at the Edge:

As the volume of IoT devices and the need for real-time analytics increases, edge computing has gained significant momentum. Azure IoT enables edge computing by seamlessly extending its capabilities to the edge devices. In 2023, we can expect Azure IoT to further enhance its edge computing offerings, allowing organizations to process and analyze data closer to the source. With AI at the edge, businesses can leverage machine learning algorithms to gain valuable insights and take immediate actions based on real-time data.

Edge Computing and Real-time Analytics:

As IoT deployments scale, the demand for real-time data processing and analytics at the edge has grown. Azure IoT Edge allows organizations to deploy and run cloud workloads directly on IoT devices, enabling quick data analysis and insights at the edge of the network. With edge computing, businesses can reduce latency, enhance security, and make faster, data-driven decisions.

Industrial IoT (IIoT) for Smart Manufacturing:

Azure IoT is poised to play a crucial role in the digital transformation of manufacturing processes. IIoT solutions built on Azure enable manufacturers to connect their machines, collect data, and optimize operations. In 2023, we anticipate Azure IoT to continue empowering smart manufacturing by offering advanced analytics, predictive maintenance, and intelligent supply chain management. By harnessing the power of Azure IoT, manufacturers can reduce downtime, enhance productivity, and achieve greater operational efficiency.

Connected Healthcare:

In the healthcare industry, Azure IoT is revolutionizing patient care and operational efficiency. In 2023, we expect Azure IoT to drive the connected healthcare ecosystem further. IoT-enabled medical devices, remote patient monitoring systems, and real-time data analytics can help healthcare providers deliver personalized care, improve patient outcomes, and optimize resource allocation. Azure IoT's robust security and compliance features ensure that sensitive patient data remains protected throughout the healthcare continuum.

Smart Cities and Sustainable Infrastructure:

As cities strive to become more sustainable and efficient, Azure IoT offers a powerful platform for smart city initiatives. In 2023, Azure IoT is likely to facilitate the deployment of smart sensors, intelligent transportation systems, and efficient energy management solutions. By leveraging Azure IoT, cities can enhance traffic management, reduce carbon emissions, and improve the overall quality of life for their residents.

Retail and Customer Experience:

Azure IoT is transforming the retail landscape by enabling personalized customer experiences, inventory optimization, and real-time supply chain visibility. In 2023, we can expect Azure IoT to continue enhancing the retail industry with innovations such as cashier-less stores, smart shelves, and automated inventory management. By leveraging Azure IoT's capabilities, retailers can gain valuable insights into customer behavior, streamline operations, and deliver superior shopping experiences.

AI and Machine Learning Integration:

Azure IoT integrates seamlessly with Microsoft's powerful artificial intelligence (AI) and machine learning (ML) capabilities. By leveraging Azure IoT and Azure AI services, organizations can gain actionable insights from their IoT data. For example, predictive maintenance algorithms can analyze sensor data to detect equipment failures before they occur, minimizing downtime and optimizing operational efficiency.

Enhanced Security and Device Management:

In an increasingly interconnected world, security is a top priority for IoT deployments. Azure IoT provides robust security features to protect devices, data, and communications. With features like Azure Sphere, organizations can build secure and trustworthy IoT devices, while Azure IoT Hub ensures secure and reliable device-to-cloud and cloud-to-device communication. Additionally, Azure IoT Central simplifies device management, enabling organizations to monitor and manage their IoT devices at scale.

Industry-specific Solutions:

Azure IoT offers industry-specific solutions tailored to the unique needs of various sectors. Whether it's manufacturing, healthcare, retail, or transportation, Azure IoT provides pre-built solutions and accelerators to jumpstart IoT deployments. For example, in manufacturing, Azure IoT helps optimize production processes, monitor equipment performance, and enable predictive maintenance. In healthcare, it enables remote patient monitoring, asset tracking, and patient safety solutions.

Integration with Azure Services:

Azure IoT seamlessly integrates with a wide range of Azure services, creating a comprehensive ecosystem for IoT deployments. Organizations can leverage services like Azure Functions for serverless computing, Azure Stream Analytics for real-time data processing, Azure Cosmos DB for scalable and globally distributed databases, and Azure Logic Apps for workflow automation. This integration enables organizations to build end-to-end IoT solutions with ease.

Conclusion:

In 2023, Azure IoT is set to drive innovation across various sectors, including manufacturing, healthcare, cities, and retail. With its robust suite of services, edge computing capabilities, and AI integration, Azure IoT empowers organizations to harness the full potential of IoT and achieve digital transformation. As businesses embrace the latest trends and leverage the diverse use cases of Azure IoT, they can gain a competitive edge, improve operational efficiency, and unlock new opportunities in the connected world.

 

About Infysion

We work closely with our clients to help them successfully build and execute their most critical strategies. We work behind-the-scenes with machine manufacturers and industrial SaaS providers, to help them build intelligent solutions around Condition based machine monitoring, analytics-driven Asset management, accurate Failure predictions and end-to-end operations visibility. Since our founding 3 years ago, Infysion has successfully productionised over 20+ industry implementations, that support Energy production, Water & electricity supply monitoring, Wind & Solar farms management, assets monitoring and Healthcare equipment monitoring.

We strive to provide our clients with exceptional software and services that will create a meaningful impact on their bottom line.

 Visit our website to learn more about success stories, how we work, Latest Blogs and different services we do offer!

Read more…

In recent days, neural networks have become a topic for discussion. But the question still needs to be solved- How can it affect our world today and tomorrow?

The global neural network market's compound annual growth rate (CAGR) is expected to be 26.7% from 2021 to 2030. This means that new areas of application for them might appear soon. The Internet of Things that is IoT, is today's most fascinating and required technological solution for business. Around 61% of companies utilize IoT platforms, and we can anticipate the integration of neural networks into enterprise IoT solutions. This anticipation raises many questions, like what gets such collaboration and how to prepare it. Can we optimize the IoT ecosystem using neural networks, and who will approach such solutions?

What do you understand by a neural network, and how is it beneficial for enterprise IoT?

 

An artificial neural network that is ANN is a network of artificial neurons striving to simulate the analytical mechanisms taken by the human brain. This type of artificial intelligence includes a range of algorithms that can "learn" from their own experience and improve themselves, which is very different from classical algorithms that are programmed to resolve only specific tasks. Thus, with time, the neural network will remain pertinent and keep on improving.

With the proper implementation, enterprise internet of things (EIoT) and ANN can offer the business the most valuable things: precise analytics and forecasts. In general, it is not possible to compare both. Enterprise IoT is a system that needs software for data analysis, whereas ANN is a component that needs a large amount of data to be operational. Their team naturally controls the analytical tasks; therefore, high-level business tasks are performed most effectively, reducing costs, automating processes, finding new revenue sources, etc.

In the Internet of Things ecosystem, neural networks help in two areas above all:

  • Data acquisition via ANN-based machine vision
  • Advanced-data analysis

If it needs significant investments to execute ANN in big data analytics solutions, neural network image processing can decrease the cost of the IoT solution. Thus, neural networks improve enterprise IoT solutions, enhance their value, and speed up global adoption.

Which solutions within enterprise IoT can be enhanced using neural networks?

 

IoT-based visual control

 

The IoT ecosystem begins with data collection. Data quality impacts the accuracy of the ultimate prediction. If you implement visual control in your production processes, neural networks can boost the quality of products by superseding outdated algorithms. Besides this, they will optimize the EIoT solution. Conventional machine vision systems are pricey as they require the highest resolution cameras to catch minor defects in a product. They come with complex specific software that fails to respond to immediate changes.

Neural networks within machine vision systems can:

  • Diminish camera requirements
  • Self-learn on your data
  • Automate high-speed operations

Indeed, industrial cameras use large-format global shutter sensors having high sensitivity and resolution to develop the highest quality images. Nevertheless, a well-trained ANN starts to identify images with time. It allows them to reduce the technical needs for the camera and ultimately cuts the final cost of the enterprise IoT implementation. You cannot compromise the quality of images to detect small components like parts in circuit boards; however, it is manageable for printing production, completeness checking, or food packaging.

After training, neural networks use massive amounts of data to identify objects from the images. It enables you to customize the EIoT solution and train the ANN to operate specifically with your product by processing your images.

For example, convolutional neural networks are utilized actively in the healthcare industry to detect X-rays and CT scans. The outcome offered by such custom systems is more precise than conventional ones. The capability to process information at high speeds permits the automation of production processes. When the problem or defect is caught, neural networks promptly report it to the operator or launch an intelligent reaction, like automating sorting. Hence, it allows real-time detection and rejection of defective production.

An exclusive example of how ANN is utilized for edge and fog computing. As per PSA, a neural network executed in a machine vision system permits lowering the number of defects by 90% in half a year, whereas production costs are decreased by 30%. Prospective areas for ANN in IoT visual control are quality assurance, sorting, production, collecting, marking, traffic control, and ADAS.

Big data advanced analytics for enterprise IoT:

 

Today, neural networks allow businesses to grab advantages like predictive maintenance, new revenue flows, asset management, etc. It is possible via deep neural networks (DNN) and the deep Learning (DL) method involving multiple layers for data processing. They detect hidden data trends and valuable information from a significant dataset by employing classification, clustering, and regression. It results in effective business solutions and the facilitation of business applications.

In comparison to traditional models, DL manages with the attributes that are expected for IoT data:

  1. Assess the time of taking measurements
  2. Resist the high noise of the enterprise IoT data
  3. Conduct accurate real-time analysis
  4. Determine heterogeneous and discordant data
  5. Process a large amount of data

In practice, this implies that you don't require middle solutions to deliver and sort the data in the cloud or to analyze them in real-time. For example, full-cycle metallurgical enterprises can execute one solution to analyze the variable and unstructured data from metal mining, smelting, and final manufacturing products. Airplanes generate about 800TB of data per hour, making it impossible to process it all ideally using conventional analytical systems.

Today, DNN models are successful in the following enterprise IoT applications. 

Healthcare:

Today, it has become easy to predict disease using AI-based IoT systems, and this technology is developing for further improvements. For instance, the latest invention based on the neural network can detect the risk of heart attacks by up to 94.8%. DNN is also helpful in disease detection: the spectrogram of a person's voice received using IoT devices can identify voice pathologies after DNN processing. In general, ANN-based IoT health monitoring systems' accuracy is estimated to be above 85%.

Power consumption:

DL systems in the enterprise Internet of Things have provided results in power demand prediction based on power price forecasting, consumption data, anomaly, power theft detection, and leak detection. Smart meter data analysis permits you to calculate consumption, determine the unusual usage of electricity, and predict with an accuracy of more than 95%, which will help you to adjust energy consumption.

Manufacturing:

Neural networks help to use the most demanded IoT service among manufacturers properly- predictive equipment maintenance. It was ascertained to be a workable practice for mechanical and electrical systems. This network provides accurate real-time status monitoring and predicts proper life rest. Another best example is the recognition of employee activity by taking readings and following in-depth analysis.

Transportation & Logistics:

Deep Learning has made smart transportation systems possible. It offers better traffic congestion management by processing travel time, speed, weather, and occupational parking forecasting. Analytical reports based on vehicle data help to discover dangerous driving and possible issues before the failure happens.

As we know, the previous industries generate heterogeneous data. Therefore, the potential of ANN analytics within EIoT will be unlocked for multiple complicated systems.

When to consider ANN for enterprise IoT:

 

Till now, research in the field of ANNs been very active, and we cannot foretell all the advantages or pitfalls these solutions will convey. No doubt, neural networks find out correlations, models, and trends better than other algorithms. The IoT ecosystem's data will become more extensive, complex, and diverse with time. So, the development of neural networks is the future of IoT.

For now, we can look into the following features of neural networks for enterprise IoT:

  • They suit the IoT ecosystem architecture, substituting alternative solutions with significant advantages.
  • Essential for industrial image processing.
  • Progressive ANN-based data analytics gets the high-level business value of the enterprise IoT solutions – improves productivity, and exactness, boosts sales, and produces informed business decisions.
  • Training the ANN requires time and expenditure but will become fully customizable.
  • We cannot conclude it is an affordable solution, but the advantages are priceless if the IoT ecosystem is executed accurately.

Therefore, if you are provided with a neural network as one of the opportunities for executing your idea within the IoT ecosystem, give it a chance. You never know, this solution will become a must-have in the coming years.

Read more…

The Internet of Things is growing at breakneck speed. One report suggests that the global market for IoT will surpass $1.38 trillion by 2026 — a substantial increase from its 2020 valuation of $761.4 billion.

The IoT is nothing without IoT platforms — middleware that connects sensors, assets, data, software, and business processes. It brings all the different components of your IoT infrastructure together so your business can get every possible benefit.

There are many IoT platforms on the market, and it’s important to find the right one for your business. This can be a challenging task, with lots of complex and competing information to sift through. 

In this article, we’ve put together a list of the main factors that should drive your decision when settling on an IoT platformhelping you make an informed decision that leads to the best solution for your needs.

Why you need an IoT platform?

There are many reasons to consider investing in an IoT platform. Essentially, the job of an IoT platform is to act as a ready-made framework for all your IoT infrastructure, pulling everything together and helping you start getting the benefits as quickly as possible. Here are some of the biggest advantages of a good IoT platform:

  • It saves money, by making it more likely that your project will succeed and reducing the amount of time you’ll need to spend developing your own systems and fixing problems. Without relying on an IoT platform, it’s more likely that your project will fail and cost money. IoT platforms also centralize the management of your IoT network which is much more cost-efficient than trying to manage a scattered collection of devices.
  • It helps provide security, ensuring your devices are safe, keeping your valuable data safe from the hands of hackers and cybercriminals, and giving you peace of mind.
  • It helps you go to market quicker. IoT platforms take care of many aspects of your IoT project, saving you significant time and allowing you to roll out a prototype quickly.
  • Good IoT platforms come packed with ready-made features, from help with billing to data analytics support, all geared towards helping you get the most out of your IoT infrastructure and providing valuable support to every member of your team.
  • Device and data integration. IoT platforms bring all your devices together and integrate them into one central system. This way, you can integrate the data with your enterprise systems and enhance your organization’s existing processes. The result is a more cohesive network with each part supporting the whole, as opposed to a disparate collection of individual devices.
  • It helps improve and streamline operations across your entire business by bringing IoT data together with data from external sources, allowing for a more holistic view of your entire organization which can drive better working processes and help you hit your goals in various areas.

What to look for in an IoT platform?

The best IoT platforms can provide a whole host of major advantages to your project and business as a whole. By providing connectivity as a service, they simplify the process of managing IoT devices with various connectivity technologies and remove the need to establish a contract with multiple network providers. 

But it’s important to pick the right platform for your specific needs. Here are some things to consider to ensure you make the right choice.

Connectivity management

Connectivity is a huge factor when it comes to IoT. Each project and organization has its own specific connectivity requirements, and this will have a direct impact on which IoT platform is the best fit.

Some IoT platforms are more specialized in certain technologies than others. Ideally, you should choose a platform that’s able to orchestrate a range of different connectivity technologies like LoRaWAN, Sigfox, NB-IoT, LTE Cat. M1, 4G, 5G, and WIFI.

Geographical location is also something to consider. Your IoT platform should be able to support IoT applications and devices in all the different geographical regions you need it to.

Scalability

Your IoT project will almost certainly grow over time. As this technology expands and becomes more widely used, almost every business is likely to find itself using more and more IoT devices and functions across multiple use cases.

Your IoT platform should be prepared for this. Select a platform that can comfortably scale as the project grows and is fit for all IoT project states from just a handful of devices in one area to thousands spread across many regions.

The best IoT platforms should be able to scale across a range of different deployment models, such as:

  • In a public cloud
  • In a private cloud
  • On your business premises

Security

Another major concern for IoT networks is security. Attacks on IoT devices are on the rise, with 33% of infected devices now part of the IoT. It’s essential to make sure you choose an IoT platform that prioritizes security.

If you don’t take security seriously, you’re putting your IoT infrastructure at risk of cyberattacks, which could result in downtime, the loss of sensitive data, and serious reputational damage. On top of this, many companies have to comply with strict requirements when it comes to data ownership and security, which means you could face legal penalties if your data is breached.

It’s no longer enough to simply secure your business premises — in our increasingly remotely connected world, you have to keep your devices safe wherever they are. Your IoT platform should also be able to integrate with common cloud infrastructures like Google Cloud, Microsoft Azure, and Amazon AWS.

Usability

The whole point of IoT is to make your life and business processes easier. It shouldn’t add an extra layer of difficulty and complexity to your systems. The best IoT platforms are straightforward and easy to integrate with existing processes.

The main user groups to consider here are:

  • The people who will actually be using the system — your end-users
  • The people whose job it is to maintain the system like your company’s internal engineers

For both of these groups, the IoT platform should be as user-friendly as possible with minimal friction and challenges. This not only helps you get the most out of your technology but also keeps your team happy and stress-free.

End-user application

It is crucial to make sure that your IoT platform can be integrated with your final application. Typically, you want the platform to have a standardized interface (REST API) that allows you to connect your end-user smart application and make use of the data for your particular business case.

Your chosen platform should also support the visualization of data during a pilot, as this helps you understand your IoT systems as closely as possible and communicate this to other members of your organization.

Resilience to technological change

If there’s one thing we can be sure of when it comes to technology, it’s that constant change is unavoidable. This is a good thing for businesses and ensures constant progress and development, but when it comes to IoT systems it’s essential to prepare for this ongoing change.

Your hardware, connectivity, and applications need to be adaptable and resistant to change. Otherwise, you’ll run into issues like technological lock-in where you’re forced to use technology that is no longer sufficient for the demands of the time.

One way to ensure resistance to change is to make it possible to exchange the components of your IoT solution at any time, without negatively impacting the overall final application. This allows you to modify and upgrade your infrastructure bit-by-bit over time without major delays and downtime.

When it comes to IoT platforms, there is no one-size-fits-all answer. You need to take the time to figure out which platforms are the best fit for your unique set of needs and challenges, and pick one that can help you get the most out of your network.

Read more…

Internet of Things is the perfect example of something being so simple and elegant yet being an astounding and breakthrough innovation in the modern era of disruptive technologies. This technology has already projected its influence over typical machine-based industries like oil & gas, automotive, manufacturing, utilities, etc.

However, IoT is not only beneficial for production-based companies but can also be used for practical applications in B2C businesses like tourism and hospitality.

Internet of Things in the hospitality business not only helps hotels and restaurants to improve their services but also empower their guests to enjoy exceptional hands-on experiences. It creates a network of connected devices that offer smart and autonomous experiences to the visitors.

Internet of Things offers a ton of possibilities to a hospitality business. Big hotel chains like Marriott and Hilton have already implemented this disruptive technology to enhance their generous services and provide their guests with out of the box experiences.

Below are some applications of IoT that a hotel or any hospitality business can use:

 1.Guestroom Automation to Elate Customers:

After a long journey, guests expect a pleasant and warm stay from their temporary accommodation. They prefer a completely customized service as per their expectations and likings. Smart IoT solutions now empower hotels and guesthouses to provide their visitors exactly what they desire.

IoT allows the development of a centralized and connected network between different automated systems and appliances. For example, based on their desire and liking your guests can alter the luminosity and intensity of the lights from IoT based smart lighting solutions. Moreover, appliances can also conduct operations autonomously. For example, proximity sensors embedded in the room can detect the movement of the guest and turn on the coffee machine to brew the beverage.

You can also use this connected network to identify the preferences of your customers and use this information to surprise your customers with customized and personalized services the next time they visit.

Furthermore, hospitality businesses having their hotels in different locations can also share data about their customers in a common CRM to make sure that the guests come across the same experience in every branch of the hotel chain.

This cross-property integration allows hotels to keep their customers’ profiles in a centralized system that can be accessed distantly. IoT plays a crucial role in this as it enables a hotel to collect guest’s data and share it with its patrons via the common info management software.

 2. Predictive Maintenance of Room Appliance:

The biggest disappointment for a guest is when they enter their previously booked room and find a leaky pipe or damaged air conditioner. These instances not only affects the immediate experience of the visitor but also the overall reputation of your hotel.

In order to prevent these situations, you can use the predictive analytics capabilities of the IoT solutions. Smart sensors and meters can be installed in appliances and pipeline networks to identify the possibility of unexpected breakdowns and malfunctions before your guest encounters them. These sensors will notify the room service staff about bottlenecks and enable them to fix the issue before it actually occurs.

This predictive analytics system can hence be used by hotels to improve maintenance systems and prevent sudden failure of any appliance in any of the rooms. This not only will help you to boost your customer service but also protect your hotel chain’s reputation from getting spoiled. Additionally, you will also save a lot of money that is generally spent to repair the broken equipment at a moment’s notice.

 3. Guestroom Transforming Features:

The appeal of any hotel lies in its rooms. Primarily, it is the main aspect of a hospitality business that visitors’ book. Even if you give your users with relaxing spa vouchers or free-swimming pool amenities, they are more likely to be disappointed if you don’t provide them with best in class staying experience.

It is hence of utmost importance for any hotel to keep its rooms abreast with amazing features. One way to do so is by using devices powered with quintessential technologies that are capable of presenting an amazing experience to the guests.

Some of these devices include smart switches, electronic key cards, and voice assistants. Voice assistants Amazon Alexa can be programmed to specifically cater to the demands of the customer staying in the room. This IoT and AI-powered device will enable hotel staff to monitor the preferences and likings of the guests and provide personalized services the next time they visit.

4. Smart Solutions for Hotel management:

IoT not only empowers hospitality businesses to provide outstanding services to its guests but also manage other tasks related to its conventional operations. By using facility management services of IoT, a hotel can manage the consumption of its utilities and reduce the cost associated with its usage.

Furthermore, these solutions can also be used by hotels to manage inventory and optimize resource utilization. Hence, hotels can reduce their manpower and cut costs. Moreover, these services will also aid the business to increase its guest satisfaction through its unique staying experiences.

CONCLUSION:

The success of any hospitality business depends on the satisfaction it can provide to its guests. By using the technology of IoT and its features, a hotel can enhance its services and capture the heart of its guests.

IoT helps the hospitality business to enhance its services related to housekeeping and accommodation that in turn boosts the satisfaction of the customers. This also increases the reputation of the hotel chain which results in better business opportunities.

Read more…

The White Knight of IoT Platforms

In spite the Internet of Things term was coined by Kevin Ashton executive director of the Auto-ID Center as the title of a presentation he made at Procter & Gamble (P&G) in 1999, it was only when companies like Pachube (an early leader in the burgeoning “Internet of things” field) launched a web service  that enabled to store, share & discover real time sensor, energy and environment data from objects & devices around the world, when most of us believed that the time to IoT was finally had arrived.

 

Since its founding in 2008, Pachube pretended to be the leading open development platform for the Internet of Things.  In 2011 when the company was acquired by Woburn, Massachusetts-based LogMeIn in a deal that was worth "approximately $15 million in cash that re-branded the service as Cosm, but it was still a “beta” test version, to finally launch Xively that become a division of LogMeIn.  LogMeIn did not want or did not know how to incorporate the potential of Xively into its business. And in 2017 again Xively lost its charm.

Google the White Knight of Xively

On February 15, we wake up with the new that Google will acquire IoT platform Xively from LogMeIn for $50 million, according to Bloomberg, to expand in market for connected devices. Google has been the White Knight of Xively.

 

Another White Knights

In December 30, 2013 - PTC announced it had acquired ThingWorx, a PTC Technology for approximately $112 million, plus a possible earn-out of up to $18 million. The acquisition of ThingWorx positioned PTC as a major player in the emerging Internet of Things era. Later, in July 2014 PTC acquired Axeda Corporation for approximately $170 million in cash which Gartner estimated is an acquisition multiple of just over 6 times revenue.

In February 2016, Cisco Acquired Jasper Technologies for $1.4 Billion in cash. How wonderful White Knight.

A software goliath company like SAP acquires a small IoT startup like PLAT.ONE  now part of SAP?

In 2016, Microsoft did not disclose the sum for Italian start-up Solair acquisition. Th startup  expanded Azure capabilities.

In March 2015, Amazon was taking another step into the Internet of Things acquiring 2lemetry, a startup with a system for sending, receiving, and analyzing data from Internet-connected devices.  2lemetry had raised at least $9 million. Investors included Salesforce Ventures.   

 

We all know that the IoT Platform market need a quick consolidation

The M2M/IOT Platform market has changed in the last 10 years. The fragmentation is unsustainable and I can say that I do not see a clear IoT platform market leader yet that works as a plug-and-play fix for all kind of connected-device creators. Besides, the rush of investors for IoT platform companies trigger rumors of new acquisitions increasing significantly their actual valuation and encourages thousands of entrepreneurs and startups to create new IoT platform copies of each other. Although there is still room for new innovative IoT platform startups, the decision to trust in a company able to simplify the complexities of the IoT, with a scalable and robust infrastructure and drive real results for your business, will reduce the choice among a short list. The bad news is that the hundreds of IoT platforms startups must compete now with the platforms offered by Tech and Industrial Giant vendors.

 

Given the confusion that exists about the IoT platforms, companies need to approach experts’ advisors that will recommend which platform(s) is most suitable for your current and future business and technical requirements.

 

There will not be White Knights for everyone

In “Be careful of the Walking Dead of IoT, I alerted that in spite that no one has the crystal ball, it is almost sure that many IoT platforms are not going to continue within 10 years, not even within 1, 2 or 3 years in this inflated market. As show in the picture below, some Tech Giants have been looking and found some of the best pieces. What will happen to the 700+ platforms out there? There will not be White Knights for everyone. At least for Xively it has been a happy end.

Thanks in advance for your Likes and Shares

Thoughts ? Comments ?   

 

Read more…

 

The Internet of Things (IoT) enables vendors to create an entirely new line of “smart” solutions for its existing and new markets. While the decision to go “smart” is straightforward, the decision of how to do so is not. Vendors are faced with a “build, buy, partner” decision – build it themselves, buy or license it from someone, or partner with a complementary solution provider and go to market together. This article discusses some of the key considerations product managers and executives must study in order to make the most appropriate decision.

 

“Build, buy, partner” is a strategic decision

For many vendors, IoT means adding a technology layer to products that never had any before. Even for tech savvy vendors, IoT presents a whole new set of technologies that they are less familiar with. Equally important, IoT is not just technology, but includes data, security, user experience, and business/business model elements. Figure One shows an IoT product management framework developed by Daniel Elizalde of TechProductManagement. A company going “smart” has a lot of decisions to make, of which technology is just one component.

Figure One. IoT Product Management Stack.

The framework shows that the “build, buy, partner” decision is multi-dimensional. There are six decision areas, spread across components from the edge to the user applications. Each represents a different “build, buy, partner” decision point, and each takes the company down a different path. In today’s fragmented and dynamic IoT ecosystem, many companies will need to “build, buy, partner” simultaneously. For example, cybersecurity is a specialized field that many vendors cannot address on their own, and must buy or license for their solution. The actual proportion of “build, buy, partner” each vendor does varies based on their specific situations.

Build

The company creates the solution themselves with the resources they own, control or contract to. Companies who choose this option, but have limited internal expertise may contract with Original Design Manufacturers (ODM). These ODMs provide a portfolio of services, from design, prototyping, test, certification, to manufacturing.

The “Build” option enables full management oversight of the development process, the solution functionality and the intellectual property. Conversely, this option may result in a longer time to market, and require additional capital and resources beyond what is scoped.

Companies consider this approach when:

  • They have the requisite skill sets and resources to do it
  • They can do it faster, cheaper and at lower risk
  • This is a strategic competence they own or want to own
  • There is strategic knowledge or critical intellectual property to protect
  • They are fully committed throughout the company

Buy

The company procures all or part of the solution components from a 3rd party. This includes licensing technology and services. Companies may also acquire technology through mergers and acquisitions, as well as buying the rights to technology from companies willing to part with it. This option eliminates “reinventing the wheel”, enables faster time to market, maximizes resource efficiency with limited execution risk. One common variant of this approach is to buy technology platform from a vendor, and then build their specific solution components on top of that. 

The downsides of the “Buy” option include a loss of control in the development process, and limited agility to respond in a timely manner to changes in the market and customer needs.

Companies consider this approach when:

  • They don’t have the skills or resources to build, maintain and support it
  • There is some or all of a solution in the marketplace and no need to “reinvent the wheel”
  • Someone can do it faster, better and cheaper than they can
  • They want to focus their limited resources in other areas that make more sense
  • Time is critical and they want to get to market faster
  • There is a solution in the market place that gives you mostly what you want.

Partner

The company allies itself with a complementary solution or service provider to integrate and offer a joint solution. This option enables both companies to enter a market neither can alone, access to specialized knowledge neither has, and a faster time to market. This option adds additional management and solution integration complexity. For some companies, reliance on partners for some aspects of the solution may be uncomfortable due to a limited loss of control.

Companies consider this approach when:

  • Neither party has the full offering to get to market on their own.
  • Each party brings specialized knowledge or capabilities, including technology, market access, and credibility.
  • It lowers the cost, time and risk to pursue new opportunities

 

Management considerations for “build, buy, partner”

Before the company chooses a path to go “smart”, executives and managers must base their decision along three “build, buy, partner” dimensions – execution, strategy, and transformation.

Execution

The first dimension focuses on the company’s ability to execute successfully. Managers must audit and assess their capabilities and resources to answer the following questions:

  • Do I have the necessary skills in-house to successfully develop, test, support and operate an IoT enabled “smart” solution and business (Figure One)?
  • Do I have the right human, capital, financial, and management resources to do this? Is this the best use of my resources relative to other initiatives and projects?
  • What am I willing to commit, sacrifice and re-prioritize to see this through? Am I willing to redeploy top management and company resources? How long am I willing to do this?
  • How much budget and resources am I willing to commit?
  • Is there anyone that can do it better than me? Does it make sense for me to do it? What am I willing to do and not do?
  • What infrastructure (processes, policies, systems) do I have, or need to build, maintain, support and operate these new solutions?

Strategy

The second dimension relates to the company’s current and future strategic needs. These are company specific as it relates to its current situation, its customer and channel, and its position within the industry. Key considerations to be addressed include:

  • How does going “smart” align with the company’s vision and strategy? Which parts align and which doesn’t? Does the vision and strategy need to be updated to reflect the realities of going “smart”?
  • How important is time to market? Do I need or want to be a first mover? How long will it take to execute with the resources that I have?
  • Am I trying to reach existing or new markets with IoT? Do I understand their needs well enough that I can execute on meeting it?
  • Do I have any critical proprietary technology, processes, and other intellectual property that I need to protect?
  • What are the risks? How much risk am I willing to tolerate? What are the costs of those risks? How much risk can I mitigate with my current capabilities?
  • How much control do I want or need to go “smart”? What areas do I want to control myself and how? Can I afford to control those areas?
  • What is your real value to customers and your channel? Why do they buy from you, and why do they come back? What do you do well?

Transformation

The third dimension is the company’s ability to manage transformation. Going “smart” doesn’t stop with the IoT technology. The entire organization, its operations, policies, systems and business models must transform to support and operate the “smart” business. Furthermore, resellers and service channels, and suppliers and partners, are also impacted.

  • What is your corporate culture and how well does it support change? Do you have the right people to manage and sustain this change? Are you nimble and agile?
  • What degree of disruption will there be to internal processes, channels, organization readiness, and business models? How agile are your current capabilities?
  • How prepared are you to operate a “smart” business? Do you have the skills and infrastructure required? Can you support a recurring revenue business model? How willing are you to invest in order to develop and sustain these capabilities?

 

What should you do next?

Each company is unique, and its situation will dictate its response to these dimensions. There is no one “right” universal answer to the “build, buy, partner” decision. Equally important, what’s right today, may not be right tomorrow. Companies that want to go “smart” start by looking inward first and doing the following:

  • Establish a current baseline. Audit and catalog current and planned offerings, strategy, human resources and skill sets, channel and suppliers, internal operations and policies, and culture.
  • Evaluate the IoT product management stack (Figure One) against your baseline using the three “smart” dimensions. The list of questions listed are starter questions, but answering those will lead to more questions to be addressed.
  • Evaluate and assess your company’s future state capabilities against the baseline using the three “smart” dimensions. Understand where the gaps are, and the extent of those gaps.
  • Identify your risk tolerance level. Going “smart” is not without risk, especially if you have never done it before. The key is to identify what and how much risk you are willing to take. Once you do so, you can develop a risk management plan and incorporate the appropriate tactics to manage it.
  • Update your business vision and strategy as applicable.
  • Develop your “build, buy, partner” decision and strategy. This strategy must align to the broader business vision and strategy.

 

About:

Benson Chan is an innovation catalyst at Strategy of Things, helping companies transform the Internet of Things into the Innovation of Things through its innovation laboratory, research analyst, consulting and acceleration (execution) services. He has over 25 years of scaling innovative businesses and bringing innovations to market for Fortune 500 and start-up companies. Benson shares his deep experiences in strategy, business development, marketing, product management, engineering and operations management to help IoTCentral readers address strategic and practical IoT issues.

Read more…

Tibbo announced the release 5.4 of AggreGate IoT Integration Platform.

We've achieved great results in optimizing AggreGate server performance, especially event and value update storage performance. From now on, a single server can process and persistently store up to a hundred thousand events/updates per second, which is almost equal to 10 billion events per day. Such performance figures don't even require any high-end server hardware.

A new chapter has been opened by this release, presenting AggreGate's graphical and textual programming languages inspired by IEC 61131-3 standard, also known as "SoftPLC". Millions of engineers are now able to use AggreGate as a process control logic development environment.

One innovative feature of AggreGate's automation languages is tight integration of runtime with the Tibbo Project System hardware. Your programmed logic can access and control all Tibbit modules of a Linux-based TPS board/box. Currently available languages are: Function Block Diagram (graphical), Structured Text (graphical), Sequential Function Chart (textual).

Widget capabilities are no longer limited by the standard set of components. Now it can be easily extended. New Widget Component SDK allows to implement custom visual components in Java and use them in AggreGate widgets. Extend AggreGate's wide component palette with UI controls best suited to your needs!

We continue making our UI interface clearer and more user-friendly. The next step is lightweight icons. We redesigned them to be up-to-date with modern flat paradigm. New color coding assists users to navigate over various available toolbar actions.

Other major improvements include:

  • Built-in timestamps and quality for data tables.
  • Component connectors that allow to visually link UI components with each other.
  • Secure and reliable Agent communications. Agent-Server communications now can be SSL-protected. When transferred data amount is critical, data compression can be enabled in parallel to encryption.
  • Granulation, a brand-new highly customizable data aggregation and consolidation tool. The granulation engine allows to combine datasets into compact representation that contains all important aspects of original information in virtually any form suitable for later processing. This allows to reduce memory and storage consumption along with boosting data processing performance.
  • Server remote upgrading. To reduce company's expenses, a remote AggreGate server upgrade operation is now supported. You can use our Unified Console application to connect to a remote server, upload a server upgrade bundle file and wait while the upgrade process is finished. That's it! All operations, including database backup, stopping server, upgrading and restarting will be performed at the server side automatically.

We are bringing our IT & Network Management solution (AggreGate Network Manager) to a new level by turning it into a full-fledged IT Service Management System. In this release, we introduce several essential instruments for that: Configuration Management Database (CMDB), metrics engine and topology-based root-cause analysis tools. Another ITSM functionality - IP address management module - is now available and you can use it out-of-the-box.

AggreGate 5.4 includes new device drivers: CoAP, MQTT, IEC 104, DLMS/COSEM, SMI-S.

You can get detailed information on the new 5.4 release, download and try the updated AggreGate IoT Platform on our website: http://aggregate.tibbo.com/news/release-54.html

Read more…

A few years ago, the idea of a “Telco in a Box” was very usual among the Telecommunication industry. Basically, it was a pre-integrated, turnkey real-time billing and customer care solution that enabled communications service providers (CSPs) to accelerate their growth strategies and increase profitability.

Companies like Accenture, Oracle, Redknee or Tech Mahindra used this concept addressed to Mobile Virtual Network Operators or MVNOs, Tier 3 Operators and Tier 1 sub brands. The benefits of this solution were clear:

  • A low-risk, quick to launch turnkey solution
  • Go to market faster than competitors

It was a matter of time that this marketing slogan reached the Internet of Things (IoT). And so it has been, at the moment with little noise, but it is certain that we will see much more "IoT in a Box" in the next months.

What is IoT in a Box and What's in the box

Today we could say that IoT in a Box is:

  • A pre-configured, fully integrated, enterprise-enabled IoT bundle optimized for IoT processing (Telco view)
  • All the required building blocks to develop a wireless IoT system (IoT Vendor view)

In the first case, the IoT in a Box must include some of the following components depending of the application:

  • ·         Hardware / Hardware as a Service
    • ·         1 o more battery powered modules with sensors for monitoring for instance temperature, humidity, geo-location, movement, vibration, battery level or signal strength
    • ·         1 or more Relay switch or actuators
    • ·         1 GSM chip (SIM) per module with a data plan
    • ·         IoT gateway
  • ·         Software / Software as a Service
    • ·         Device management
    • ·         Enterprise database with storage plan
    • ·         Security Connectivity
    • ·         Pre-configured dashboards
    • ·         Pre-configured thresholds and alerts
    • ·         Mobile app
  • ·         Services / Services as a Service
    • ·         Professional Services (optional)
    • ·         Support (basic included, premium optional)

When you receive your IoT in a Box.  All you must do is:

  1. charge your modules
  2. place them on (or in) things,
  3. login to your own org to name your modules, and then
  4. turn on your modules. As soon as you activate a module, it starts to send sensor data, and you can start monitoring your things in near-time - online or using the mobile app.

“The concept behind a basic “IoT in a box” is that It takes you less than 1 hour to set up your own IoT system.”

In the second case, the IoT in a Box must include a Development Kit and all required building blocks to develop a wireless IoT system. We will see some examples later.

What if I want to expand the capabilities of my IoT application?

Although IoT in a Box is aimed at solving a simple business need, in certain scenarios or industries it may be necessary to extend the capabilities included in the Box. In this regard, vendors must provide accessories, expansion modules, I/Os and peripherals, Multi-standard connectivity options  and additional Pre-configured dashboards and alerts depending of the industry and application.

Selling IoT in a Box

When I wrote Welcome to the first “Selling IoT” Master Class!, I did not emphasize in selling IoT to Small and Medium Business (SMB) and Consumer market.  Precisely, the main objective that vendors pursue with the “IoT in a box” is increase sales in SMB market. This is a huge market and vendors need a way to escalate by channel partners, but as I do not consider myself an expert selling to SMB, so I look forward for your advices.

Is IoT in a Box already in the market?

Due to confidentiality agreements, I cannot include info from different vendors that will be selling IoT in a Box very soon.  But we can find already some examples of IoT in a Box in the market. See below some of them based on public information.

T- Mobile IoT in a Box - With the T-Mobile IoT Box, you can realize your individual M2M application without great effort. Connect your devices and sensors and transfer the obtained data to a cloud system via mobile radio. A data interface provides processing and integration information to other systems, websites, or apps. The T-Mobile IoT Box consists of a developer board with an integrated M2M SIM card, several inputs / outputs and Bluetooth smart interface, an online portal and a RESTful API.

T-Mobile US – IoT promotion for device makers - Building on its movement into the internet of things (IoT) market, T-Mobile US announced a new IoT-specific pricing model as part of a promotion that includes a free Cat1 LTE module along with data services.

T-Mobile US, SVP Doug Chartier said: “The wireless industry needs simpler options for IoT to take off, and that’s exactly what we’re delivering.”

Telia M2M in a Box - M2M technology easy and affordable for any business. Telia M2M in a Box gives you a set of hardware with sensors providing you with real time information about position, movement and climate, which you can monitor directly in the web portal. A versatile and user-friendly measurement tool to observe, monitor and protect your business remotely.

Capgemini IoT-in-a-Box is a rapid, low-cost, low-risk, method to pilot IoT strategy to test and define business cases and provides a pre-configured, enterprise-ready IoT system for monitoring up to 25 devices. It simplifies the task of aligning integrating and configuring all IoT components to provide rapid time to value.

IBM - The Intelligent Building – IoT Starter Kit (Enterprise Edition) is an out–of-the-box IoT solution for Intelligent Buildings. The kit provides seamless integration of the EnOcean Smart Gateway with the Watson IoT Platform.

Relayr- Relayr -Industrial Grade Starter Kit for IoT Acceleration powered by relayr, Intel, Dell and Bosch.

Microsoft – Solair IoT in a Box was an IoT plug&play kit to connect things, sensors, machines to a gateway and then, in a few clicks, instantly visualize data on the Solair application. After acquisition of Solair probably Microsoft had discontinued this offer.

Bosch - Bosch IoT Starter kits that come with pre-configured XDK devices + cloud connectivity. It is as out of the box as it could be!

HPE - HPE Uncorks IoT In A Box - Called (at least by Hewlett Packard Enterprise) the ‘industry’s first converged systems for the IoT’, the Edgeline EL1000 and Edgeline EL4000 systems ‘integrate data capture, control, compute and storage to deliver heavy-duty analytics and insights at the edge to enable real-time decision making.’

Electric Imp - IoT QuickStart by Electric Imp - Electric Imp’s IoT QuickStart Family is designed to help you cut the time to build, test and prototype complex IoT solutions all while maintaining industrial-strength security, scalability and control. Based on reference designs that Electric Imp experts have developed over the past five years, the IoT QuickStart Family appliances represent the most frequently requested secure connectivity and device prototype solutions, each delivered in a fraction of the time and cost required by custom-built solutions.

Creator Ci40 IoT Developer Kit - The Creator Ci40 board is a high-performance, low-power microcomputer that packs a cXT200 chip based on a subsystem optimized by us specifically for IoT applications. The cXT200 SoC includes a dual-core, dual-threaded MIPS CPU clocked at 550 MHz and an Ensigma connectivity engine that covers super-fast 802.11ac 2×2 MIMO Wi-Fi and low-power Bluetooth/Bluetooth low energy (Classic and Smart). See also: Imagination Launches ‘IoT In A Box’ Kickstarter - and Build a home IoT irrigation system with 'IoT-in-a-box' kit .

Nextcloud Box – a private cloud and IoT solution for home users – from Nextcloud, Canonical and WDLabs. Nextcloud Box makes hosting a personal cloud simple and cost effective whilst maintaining a secure private environment that can be expanded with additional features via apps. The Nextcloud Box consists of a hard drive and a case, complemented by a Raspberry Pi 2 or a similar credit-card sized computer. The pre-configured, easy-to-use platform handles file storage and syncing, communication and more, requires no maintenance and enables users to install more functionality through apps like Spreed, OpenHab and Collabora Online. The box offers 1TB of storage at the price point of Eur 70. For information on where to buy please visit nextcloud.com/box.

WIKON – My M2M BOX – Our special expertise lies in the compliance with industrial standards for our product developments and the development of powerful embedded hardware and software. Special developments for explosion zones, adverse environmental conditions, IP-68 standards and extended temperature ranges are frequently in demand.

Mobica collaborates with Advantech to develop a complete IoT Solution - Mobica, a Silver member of Oracle Partner Network (OPN) and global provider of a leading-edge software engineering, testing and consultancy services, developed a solution which aggregates data from a variety of sensors and sends it to the Oracle Internet of Things Cloud Service for analysis and integration. Mobica used an Advantech UTX-3115 IoT gateway and a M2.COM based WISE-1520 Low-Power Wi-Fi IoT node for sensor input.

The ThingBox Project - Use Internet of Things technologies without any technical knowledge and for free.

Eight best IoT starter kits: The best internet of things developer kits –

Imagination Meluncurkan kit IoT –“IoT http://misteriotcom/2015/11/24/imagination-meluncurkan-kit-iot-iot-in-a-box/

There are many IoT Vendors who offer Devices, IoT platform, Apps and Services bundled with the same purpose of IoT in a Box, democratize the IoT.

IoT in a Box and IoT Marketplaces

As we know “IoT is not only about connecting things, neither controlling things”, it is about the Things become more intelligent and therefore companies could offer new services under new business models. I believe that IoT marketplaces will play a key role in the evolution of IoT in a box. We have already some examples:

Libelium, the IoT Marketplace is a one stop click-and-buy online store. The company is helping frustrated companies with pre-integrated solutions from choosing the right hardware, cloud components to application.

Telus IoT Marketplace – Connect the things that matter to your business by leveraging connected devices provided by their partner network.

ThingWorks Marketplace – gives easy access to everything you need to build and run your ThingWorx based IoT application. All components listed on the ThingWorx Marketplace are customized, tested and guaranteed to work with the ThingWorx platform.

Intel IoT marketplace – Coming soon.

“IoT in a Box solutions that encompass infrastructure, networking, analytics, service enablement and monetization to connect devices, expose data, services and processes to applications, consumers and machines will be the foundation for IoT marketplaces”.

IoT Service in a Box, the logical evolution of IoT in a Box 

I believe that the logical evolution of IoT in a Box will be IoT Service in a Box sold through IoT marketplaces. It is a matter of time that we will see:

  • ·         Predictive Maintenance in a Box as a Service
  • ·         Loss Prevention in a Box as a Service
  • ·         Asset Location in a Box as a Service
  • ·         Predictive Intrusion in a Box as a Service
  • ·         Vending Machine Product Recommendation in a Box as a Service
  • ·         Real time micro-Inventory in a Box as a Service
  • ·         Customer Emotion in a Box as a Service
  • ·         ……  Your imagination is the limit

 

 

Read more…

Sponsor