Join IoT Central | Join our LinkedIn Group | Post on IoT Central


iot platforms (5)

Cloud-based motor monitoring as a service is revolutionizing the way industries manage and maintain their critical assets. By leveraging the power of the cloud, organizations can remotely monitor motors, analyze performance data, and predict potential failures. However, as this technology continues to evolve, several challenges emerge that need to be addressed for successful implementation and operation. In this blog post, we will explore the top challenges faced in cloud-based motor monitoring as a service in 2023. 

Data Security and Privacy:

One of the primary concerns in cloud-based motor monitoring is ensuring the security and privacy of sensitive data. As motor data is transmitted and stored in the cloud, there is a need for robust encryption, authentication, and access control mechanisms. In 2023, organizations will face the challenge of implementing comprehensive data security measures to protect against unauthorized access, data breaches, and potential cyber threats. Compliance with data privacy regulations, such as GDPR or CCPA, adds an additional layer of complexity to this challenge.

Connectivity and Network Reliability:

For effective motor monitoring, a reliable and secure network connection is crucial. In remote or industrial environments, ensuring continuous connectivity can be challenging. Factors such as signal strength, network coverage, and bandwidth limitations need to be addressed to enable real-time data transmission and analysis. Organizations in 2023 will need to deploy robust networking infrastructure, explore alternative connectivity options like satellite or cellular networks, and implement redundancy measures to mitigate the risk of network disruptions.

Scalability and Data Management:

Cloud-based motor monitoring generates vast amounts of data that need to be efficiently processed, stored, and analyzed. In 2023, as the number of monitored motors increases, organizations will face challenges in scaling their data management infrastructure. They will need to ensure that their cloud-based systems can handle the growing volume of data, implement efficient data storage and retrieval mechanisms, and utilize advanced analytics and machine learning techniques to extract meaningful insights from the data.

Integration with Existing Systems:

Integrating cloud-based motor monitoring systems with existing infrastructure and software can pose significant challenges. In 2023, organizations will need to ensure seamless integration with their existing enterprise resource planning (ERP), maintenance management, and asset management systems. This includes establishing data pipelines, defining standardized protocols, and implementing interoperability between different systems. Compatibility with various motor types, brands, and communication protocols also adds complexity to the integration process.

Cost and Return on Investment:

While cloud-based motor monitoring offers numerous benefits, organizations must carefully evaluate the cost implications and expected return on investment (ROI). Implementing and maintaining the necessary hardware, software, and cloud infrastructure can incur significant expenses. Organizations in 2023 will face the challenge of assessing the financial viability of cloud-based motor monitoring, considering factors such as deployment costs, ongoing operational expenses, and the potential savings achieved through improved motor performance, reduced downtime, and optimized maintenance schedules.

Connectivity and Reliability:

Cloud-based motor monitoring relies heavily on stable and reliable internet connectivity. However, in certain remote locations or industrial settings, maintaining a consistent connection can be challenging. The availability of high-speed internet, network outages, or intermittent connections may impact real-time monitoring and timely data transmission. Service providers will need to address connectivity issues to ensure uninterrupted monitoring and minimize potential disruptions.

Scalability and Performance:

As the number of monitored motors increases, scalability and performance become critical challenges. Service providers must design their cloud infrastructure to handle the growing volume of data generated by motor sensors. Ensuring real-time data processing, analytics, and insights at scale will be vital to meet the demands of large-scale motor monitoring deployments. Continuous optimization and proactive capacity planning will be necessary to maintain optimal performance levels.

Integration with Legacy Systems:

Integrating cloud-based motor monitoring with existing legacy systems can be a complex undertaking. Many organizations have legacy equipment or infrastructure that may not be inherently compatible with cloud-based solutions. The challenge lies in seamlessly integrating these disparate systems to enable data exchange and unified monitoring. Service providers need to offer flexible integration options, standardized protocols, and compatibility with a wide range of motor types and manufacturers.

 

Data Analytics and Actionable Insights:

Collecting data from motor sensors is only the first step. The real value lies in extracting actionable insights from this data to enable predictive maintenance, identify performance trends, and optimize motor operations. Service providers must develop advanced analytics capabilities that can process large volumes of motor data and provide meaningful insights in a user-friendly format. The challenge is to offer intuitive dashboards, anomaly detection, and predictive analytics that empower users to make data-driven decisions effectively.

Conclusion:

Cloud-based motor monitoring as a service offers tremendous potential for organizations seeking to optimize motor performance and maintenance. However, in 2023, several challenges need to be addressed to ensure its successful implementation. From data security and connectivity issues to scalability, integration, and advanced analytics, service providers must actively tackle these challenges to unlock the full benefits of cloud-based motor monitoring. By doing so, organizations can enhance operational efficiency, extend motor lifespan, and reduce costly downtime in the ever-evolving landscape of motor-driven industries.

Read more…

For years, I have been written about the promise and perils of the Internet of Things (IoT). In many of my articles I described how the IoT could help transform society and kickstart the next industrial revolution. However, I think after talking these summer days with people outside this "industry" that most of them are lost with the IoT. We still cannot define in a unique and clear way what IoT is and much less explain how thanks to IoT it will change our lives, without using the example of the connected refrigerator.

At the beginning of 2015, I wondered if we would be able to build the Internet of Things. Taking a look at the most recent IoT Landscape I continue seeing how the fragmentation of the market, the lack of standards and the challenge of security continue damaging the growth of IoT. The evolution that not the revolution of IoT, has been slower than I expected and desired. Today not only Telcos admit IoT is failing to meet expectations.

Why are we lost in IoT? Let´s see some arguments.

Lost in IoT connectivity

With so many IoT connectivity options on the market, choosing the right one for your project can be complicated. It scares me to think that billions of devices will be connected in a few years to decentralized IoT networks and with no interconnectivity between them, unless we use millions of edge nodes that transfer messages among devices connected in multiple networks. If it is already difficult to justify the ROI of a use case considering a single type of connectivity, it is almost impossible to justify that these devices can communicate with other devices on different IoT subnets.

In case we consider the doubt small, we add the issue of end-to-end security and the need in some use cases networking in meshes with no single point of failure. Here comes new IoT technologies such as Blockchain to help or to confuse.

It seems that it is easy to get lost among so much connectivity technology. Isn’t true?

Suggested read: IoT Connectivity Options: Comparing Short-, Long-Range Technologies

How will Edge computing impact the global connectivity landscape?

Lost among hundreds of IoT Platforms

At least we already intuit some of the platforms that will survive among the +700 that some analysts have identified. I have only been able to analyze with more or less depth about 100. Surely my methodology of Superheroes and Supervillanos will advance the end of most of them.

It is no longer just one IoT Platform, stupid! Although they want to make it easy for us, companies like AWS, Microsoft or Google add concepts such as Serverless, Data Lakes, AI, Edge Computing, DLT and all the artillery of Cloud services to the core features of the IoT platform. I get lost in its architecture and I feel that if I get too close to one of these black holes, they will end up absorbing me.

Glad to know that “Verizon retools ThingSpace IoT platform to focus on connectivity” and system integrators are they are abandoning their in house development to embrace leaders vendors’ products.

The IoT analysts are also not helping much with its reports. IoT Platform vendors are disputing relevant positions in their graphs but we are lost when do not see any vendor in the leader quadrant of Gartner and most of them are Niche Players.

Lost between the Edge and the Clouds

In “Do not let the fog hide the clouds in the Internet of Things” , I warned about the degree of complexity that Fog / Edge Computing added to the already complex solutions in the IoT Clouds. Now nothing seems to be of great value if we do not include Edge Computing in our IoT solutions. And there our confusion arises again.

The Babel tower of Alliance & Consortiums is consolidating but we keep losing in acronyms. Industrial Internet companies felt relief with the newsThe Industrial Internet Consortium® (IIC™) and the OpenFog Consortium® (OpenFog) unite to combine the two largest and most influential international consortia in Industrial IoT, fog and edge computing. While The Open Group Open Process Automation™ Forum (OPAF) is defining the next generation edge computing standards for industrial operators.

And again, the question arises, do we wait or start my Industrial IoT project? For now, I choose "Industrial IoT - Edge Computing Vendors Overview"​ as my first book. You can read my post here

Lost in the Proof of Concept (PoC)

Businesses are spending $745 billion worldwide on IoT hardware and software in 2019 alone. Yet, three out of every four IoT implementations are failing.

Microsoft launched a new research report — IoT Signals — intended to quantify enterprise internet of things (IoT) adoption around the world. The survey of over 3,000 IT team leaders and executives provides a detailed look at the burgeoning multi-billion-dollar segment’s greatest challenges and benefits, as well as related trends. Perhaps it’s not surprising, then, that 30% of respondents say their IoT projects failed in the proof-of-concept stage, often because the implementation became too expensive or the bottom-line benefits were unclear.

There are technical reasons for example the use of Rasberry Pi or Arduino boards in the PoC and realise that you need other more expensive hardware for the project.

There are economic reasons when you try to escalate your PoC to real implementations and then the ROI doesn’t look as well as in the pilot.

There are organization reasons when leaders are failing to go all in. If you can’t get the CEO on board, then the probability to finish in the PoC is almost 100%.

If you are lost in the PoC, these tips can help you implementing IIOT.

  1. Solve a problem worth solving
  2. Keep it quick and simple
  3. Manage the Human Factor

Sources: https://internetofthingsagenda.techtarget.com/blog/IoT-Agenda/Break-out-of-IoT-proof-of-concept-purgatory

https://www.avnet.com/wps/portal/us/resources/technical-articles/article/iot/5-signs-proof-concept-purgatory/

https://titoma.com/blog/industrial-iot-avoid-pilot-purgatory

Microsoft: 30% of IoT projects fail in the proof-of-concept stage

Lost in select the right IoT Ecosystems

In Harbor Research article “ Has Anyone Seen A Real Internet of Things Ecosystem?” ,dated November 2013, the analyst firm wrote that no really significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. This article does not need changes.

Since I wrote “The value of partnership in Industrial Internet of Things”, I have heard, read and repeated hundreds of times how important it is to belong to an IoT ecosystem and how difficult it is to choose the one that suits you best.

All or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent managers able to maintain win-win transactions over the time. And according to the results, it seems to me that it is becoming very complicated.

I am working in an article in which I will analyse 4 examples of IoT ecosystems that represent a big portion of the value chain in the multiple IoT markets: IoT Hardware Ecosystem, IoT telco Operator, IoT Cloud Platform Vendor and IoT System Integrators. Hope this article could help you, if you are lost with IoT ecosystems.

https://dblaza.blogspot.com/2014/04/will-strong-iot-ecosystem-beat-out-push.html

Remember, you are not the only one lost in IoT

When it comes to achieving a return on their investment from IoT, businesses really need rethink how they are deploying it so that they can manage remotely and secure their assets, use the sensors and devices data to make better real time decisions and be able to monetise it. However, for both to happen, and for IoT project to not end up in the purgatory, businesses need independent and expert advice at several levels to find the right people to lead the project and the right technology and partners to make implementation successful.

 

Thanks for your Likes and Share.

Read more…

In recent years I have listened till the satiety about the importance of ecosystems to make the promises of the IoT come true and in some way for not to leave in bad position the analysts who have flooded us with their optimistic predictions.

All, or at least most of those who read my articles know that there is no company in the world, no matter how great it is, it can do everything in IoT. So, ecosystems are the key to successfully in this business.

The ecosystem allows to achieve a multiplier effect and a trusted environment.

Creating an IoT ecosystem either horizontal (technology) or vertical (industry) requires a lot of talent alliance managers able to maintain win-win transactions over the time.

Select an IoT ecosystem is not an easy task. In the IoT ecosystems there are fights between equals, also abuses usually produced from the big ones over the little ones. There are conflicts with companies that are in several ecosystems sometimes with contradictory interests. It is very usual how partners collide with the objectives of the ecosystem and you can imagine betrayals and back stabs.

For instance after IBM acquisition of Red Hat, will the IoT open source architecture designed by the ecosystem Red Hat , Eurotech and Cloudera be a good decision?

In my post “The value of partnership in Industrial Internet of Things”  and subsequent comments I presented several successful cases of collaboration among members of these ecosystems. But let's be honest, there are few references and examples after 4 years.

The fragility of Alliances in IoT is a challenge to accelerate adoption of IoT Ecosystem solutions.

IoT Ecosystems

In Harbor Research article “ Has Anyone Seen A Real Internet of Things Ecosystem?” ,dated November 2013, the analyst firm wrote that no really significant ecosystem or network of collaborators had emerged in the IoT arena in spite there was early and very interesting efforts being made by several players. We can thing that in 2013, these ecosystems were very emergent alliance developments and have had not attained the scale, scope and momentum we expect will be required to really drive this opportunity to its intended and expected scale.  Most of the attempts thus far to drive an ecosystem advantage have failed to scale and reach critical mass.  This just underscores how challenging building a high velocity network of partners can be.

In this article I will focus my analysis on 4 examples of IoT ecosystems that represent a big portion of the value chain in the multiple IoT submarkets: IoT Connectivity Provider, IoT Cloud Platform Vendor, IoT Professional Services and IoT Solution Aggregator.

Telefonica: IoT Connectivity Ecosystem - https://iot.telefonica.com/partners

One of my first attempts to monetize my IoT services was through the Telefonica IoT Solution Partners program. It was four years ago. At the beginning I received a couple of calls from the Operator to help me create my account and describe my services. We were many partners and although the Partners Search portal left a lot to be desired, I did not see much competition in my services and I thought that we would be the perfect accelerator for the ecosystem. I was wrong. Since I register, I have not received any invitation to participate in any event for partners, nor has anyone contacted me to request my services, nor have I needed the portal for contact any other partner (for that I already have my LinkedIn network).

How the hell are you going to find me as IoT Solution partner if Telefonica IoT web page does not offer a link to the partner search page ? and the use of this non update page is frustrating with duplicates names, closed companies, etc.

Telefonica identifies 3 types of Partners: Operators Alliances, Channel Partners and Solution Partners.

Operators Alliances: Telefonica is partnering with other Tier-1 telecom operators including the IoT World Alliance and other operators like China Unicom, Sunrise and Avea in order to provide IoT customers with the best, seamless services worldwide and lower costs.

Channel Partners: Telefonica enables partners to drive growth and differentiate their business by reselling their Global Managed IoT services. It helps to increase their capabilities, enabling deployment on a global scale, in particular in regions such as Europe and Latin America

Solution Partners: Telefonica Solution Partners ecosystem consists of a global network of IoT providers with functional or industrial expertise: IoT Device Providers, IoT System Integrators and IoT Industrial Experts.

I never liked the idea of Telefonica oriented to quantity (around 1000 partners including duplicate names and not updated list) instead of quality in Partners and I think the results have been and are very poor. Clearly a point to improve if they want the IoT to take off inside the Operator.

Talking with Telefonica IoT you quickly recognize that if you are not Microsoft, AWS, or similar unless you bring business to them you will never get business from them.

Telefonica does not lead any IoT ecosystem, neither geographically, nor industrially nor technologically. It is just one more logo (important of course) in many presentations of IoT vendors.

I can not understand of its win-win strategy and goto market regarding IoT platforms. In addition to its own platform, Telefonica appears as a partner of at least Microsoft Azure, PTC-Thingworx, SAG Cumulocity, AWS IoT, Cisco Jasper, Libelium, etc. Maybe they should select partners around ‘share of outcome’ rather than share of investment if they want to lead some ecosystem. Pecking is good for the birds.

Telefonica need an open-minded company culture to become comfortable with an ecosystem structure.

IoT Cloud Platform Vendor  -  Microsoft IoT Ecosystem

Having worked at Microsoft, I recognize that I have had the temptation to become an IoT partner. But also, because my business model is based on vendor independence my decision was to help other companies to enter in the MSFT IoT ecosystem

This year I was convinced that I needed to change my approach. But, instead of becoming a partner, I decided to convince other 2 Microsoft partners strong in complementary disciplines (Business Intelligence and Cloud) to create a specific area for IoT. I have not succeeded, which makes me think that despite the efforts and investment planned by Microsoft, Partners do not see IoT business clearly yet.

The list of Internet of Things Trusted Partners certified in Microsoft Azure Certified is impress and I recognize the effort of Microsoft building an IoT ecosystem that fuels business transformation. Without going further, the largest partnership with GE Predix and the partnership with PTC  will help industry customers accelerate their digital transformations by adopting IoT.

In this case, finding an partner de Microsoft Azure IoT is easier than in the previous case. The categories of IoT partners for Microsoft are: Devices, Gateways, security, isv, network and telecommunication and system integrators.

By the way, no partner in Spain according with this web. ☹. Maybe is the right time to invest.

 Microsoft is expert identifying, nurturing and managing partners and Azure IoT is a great opportunity to lead some IoT ecosystems.

IoT Professional Services - EY IoT Ecosystem

EY, otherwise known as Ernst and Young, is a leader in the IoT space. Not involved in the construction of devices themselves, EY is instead helping organisations navigate the largely unchartered waters of IoT.

While working in an engagement with EY IoT, I read a report developed by Forrester Research dated Oct/18, 2017 “Vendor Landscape: IoT Professional Services”. This report segments the landscape of IoT Professional Services firms, based on functional capabilities to help enterprises deploy IoT-enabled processes, vertical market focus, and geographic reach. Based on the service offerings, vertical capabilities, and characteristics of a broad array of professional services firms, Forrester has identified eight categories. The major players in the consulting firm segment include Deloitte, EY, KPMG, and PWC because these strategic consulting firms combine strong business strategy capabilities with the ability to execute on digital transformation initiatives. The report clearly showed EY strong IoT capabilities across the globe. EY was also recognized as Internet of Things services leader by HFS Research.

For EY, initiatives like launch a global IoT/OT Security Lab to help clients stay ahead of emerging threats or to launch EY wavespace™, a global network of growth and innovation centers to help clients achieve radical breakthroughs is a way to demonstrate its strategic alliances like SAP, GE Digital, Microsoft, IBM or Cisco how important is to create an ecosystem with the firm. These technology vendors rely on EY to implement IoT solutions in large customers with a business-driven approach.

Do not expect EY or any of the consulting firms to lead any IoT ecosystem. Their role is to leverage their business strengths and client relationship to empower the ecosystems to which they belong

IoT Solution Aggregator - Tech Data IoT Ecosystem

Perhaps the most complex task I have done regarding advising of IoT ecosystems was with one of the largest IT distributors in the world, Tech Data. The challenge of balancing players like Microsoft, Dell, Cisco, IBM, Schneider or Vodafone with innovative startups in several industry verticals and different use cases without anyone feeling careless was very exciting.

To find a right place for Tech Data in the IoT value proposition schema, , was another challenge. It was great helping the company defining its role as an IoT Solution Aggregator and define which partners should be included for Tech Data IoT repeatable solutions.

Tech Data has been able to demonstrate how to become useful for IT and OT vendors and how provide value to existing and new channel of IIOT system Integrators worldwide.

I always have believed this approach could make easy for their small and medium end clients to adopt IoT solutions quickly.

I did not have time during my engagement with Tech Data to analyse and support the launch on new business models, but I am sure they will leverage its position to offer new services based on data aggregation.

Education, the latest products, support services, and firm footing in the B2B world put IoT Solution Integrators  at the centre of the Internet of Things craze.

 Key Takeaway

The IoT market is still in its early stage. Enterprises face many different options for IoT partners and suppliers. Choosing the right ecosystem is critical not only for a successful IoT project implementation but for the journey in their Digital Transformation.

IoT ecosystems need to understand that most industries thrive on "coopetition," it’s important to become cognizant and respectful of competitors, as they may also be your potential partners.

Just like with people, when it comes to IoT business, no two ecosystems are alike. We have been helping different type of companies to build or enter in the most suitable ecosystem. I have no doubt only the best ecosystems will survive; the challenge is to rank among so many. It is really a nightmare.

Ecosystems is hardly new but as rapidly evolving and if they are able to leverage the shared data and information from intelligent sensors, machines and assets, radical new modes of value creation will emerge.

Read more…

Among the words, phrases and acronyms in the Tech worlds “Platform” seems to be a word which seems to grab the headlines. If one listens to any pitch from a start up venture it would be not uncommon to get the “platform pitch”in at least 1 out of 2 proposals. A lazy search on Google on the “Top 20 Tech weary  words” fetched me the result that “platform was 3rd in the list . (https://www.businessinsider.com.au/the-worlds-top-20-tech-weary-words-for-2014-2014-5).

There have been words verbalised like “Being Platformed” as well and a host of books on the significance of platform in the Technology world. I will not go into the virtues of platform. I would dwell on how the leaders in respective segments  are a few ( a maximum of 3 ) while in the IoT world we seem to have by some counts 170 of them ( McKinsey ) to 400 of them ( Beecham Research).This is definitely a bewildering array to go through and investigate .

What is a Platform – why there are only a few platform leaders ?

Stepping back – different people have different views and meanings of the word “platform”. To get a view of the diversity of platforms we have:

Browsers (Chrome and Firefox) ,smart phone operating systems ( iOS and Android) , blogging  (Word Press , Medium ) .Social Media titans (YouTube, Facebook) and even Instagram are described as platforms. Uber, Airbnb and their ilk are widely described as ‘marketplaces’, ‘platforms’ or ‘marketplace-platforms.’ Web services (Google Payments, Amazon Elastic Cloud) and  gaming consoles (Xbox, Apple’s ipod Touch, Sony Playstation). One interesting point to be  noted that in each category the market is mostly duopolistic .

To accommodate this diversity the safest definition of platform would be as :

  1.  An extensible codebase of a software-based system that provides core functionality provided by the modules that interoperate with it, and the interfaces ( aka Application Programming Interface (APIs)) through which they interoperate. In effect this system  abstracts a number of common functions without bringing out the complexity of building and managing them ,  for the users .
  2.  The goal is to  enable interactions between producers and the consumers
  3. This is enabled through three layers comprising the Network ( to connect  participants to the platform), Technology Infrastructure ( to help create and exchange value )  and Workflow and Data ( thereby matching participants with content , goods and services ) .

This definition brings in the 2 dimensions of a platform. One that would be for internal use and the other for external use .

  1. An internal dimension  for building platforms is to ensure all necessary modules interoperate , and
  2. An external dimension for building platforms is to enable interaction with the outside world and make it as accessible and usable as is possible.

Internal dimension led platforms focus on internal productivity and efficiencies and focus on users. Here the development is internally sourced and is essentially  built for internal use .  The external dimension led platforms focus on the supply (developer side) and the demand (user side) . Essentially they are sometimes termed as “two-sided” platforms .The development beyond a point is crowd-sourced and they enrich the platform and the platform reaches out to them through APIs.

In most of the cases if the external dimension is well evolved then the internalities come with the efficiencies by default; with respect to design quality , selection of interfaces leading to interoperability  , robustness of infrastructure , seamlessness in workflow and data streaming  .

External dimension platforms compete for both users and developers

Here one important aspect to be remembered is a Platform may not be ready to provide solutions to contextual and domain specific problem statements. Applications built around the platform do that, these applications help get the Return on Investment ( RoI ) from the platforms .

In any segment you must have seen that the winners are a few ( atmost 2 or 3  , aspirants may be many, who progressively wither away )  .The reasons has been presented above with respect to design quality , interoperability, infrastructure robustness and seamlessness in workflow and data flow and the last but not the least excellent and friendly user interface . Not many can master all the 4 aspects .These help acquire a critical mass of customer base which keeps growing and a duopoly of sorts is created in the market space .

Successful platforms have the ability to support the variety of business use cases in the present and have strive to  build the  design to evolve over time and be to an extent future ready .

The Bazaar of IoT platforms- The reasons & who would be the winners  wading through the maze ?

Now when coming to Internet of Things (IoT)  , The IoT  movement repeatedly talks about platforms, but those definitions don’t align with any of Uber, Medium or Android. The first issue is interoperability.  And none of these align with each other either.

Now let us address the question is the why of “plethora of platforms” in IoT .

It can be seen clearly that a typical architecture of an IoT solution is multilayered. The layers to simplistically put would be Device to Device ( this involves hardware and firmware with Low Range Communication ) , Device to Server ( which would again involve hardware and communication ) and server to server ( which would mean that cloud based application and long range communication would hold the key along with network , data storage and data visualisation ) .

So we see protocols and standards are driven through their origins from communication technologies ( we see Telecom companies like AT&T and Verizon leading here ) , in the data storage area ( we have Amazon , Google leading the way ) , in the application side ( Azure from Microsoft and Thingworx from PTC being the prominent ones ) . Companies which has a library of business use cases with them given the dominance they have in their respective businesses (namely Bosch , GE , Honeywell ) have the ambition to build their community based platforms .Then we have a host of start ups who run a platform per a business use case they address .

So the genesis of the “plethora of platforms” in the multilayered solution stack of IoT . This adds to complexity and hence no one player can be a leader across the layers as on date .

In the coming  years it could be reckoned that there would be a shakeout in the market and the platforms could veer around key broad based use cases of remote monitoring and environment conditioning , predictive maintenance and process automation .

The ones which will win the battle of supremacy would have cracked the codes of

  1. Security,
  2. Open interfaces,
  3. Carrier grade reliability,
  4. Service levels,
  5. Scalability and
  6. And allow for aa seamless integration into the back-office environment which is essential to the enterprise’s business operations.
  7. With a impressive  usability and user interface .

Given the multitier architecture and the attendant complexity it will be a while before a small group of winners starts to bubble to the top . Some of the also-ran aspirants may focus on domains and address a  specific part of the ecosystem in which to play or in the industry segments like home or industrial to justify their presence .

 

 

Read more…

The world is full of normal people like you and me, but I love to think that superheroes live between us and I dream that maybe someday I could become one of them and make a better world with my super powers.

In the universe of superheroes fit gods, mutants, humans with special skills, but also the special agents. I found fun to find similarities between this fantastic world and the world of IoT platforms.  Compare and find a reasonable resemblance between IoT Platforms and Superheroes or Super villains is the goal of this article. Opinions as always are personal and subject to all kinds of comments and appreciations. Enjoy, the article.

About IoT Platforms

Many of my regular readers remember my article “It is an IoT Platform, stupid !.”. At that time, per Research and Markets, there were more than 260 IoT platforms, today some sources speak about 700 IoT platforms. I confess, I have not been able to follow the birth, evolution and in some cases death of all IoT platforms out there. I think that many enthusiasts like me also have given up keeping an updated list.

I cannot predict which IoT platforms will survive beyond 2020, or which will be the lucky start-ups that will be bought by big companies or will receive the investors' mana to become a Unicorn, but I like to speculate, and of course, I have my favourite winners and unlucky losers.

About my Own Methodology

Some reputed analysts have adapted their classification methodologies of IT solutions to put some order and consistency into the chaotic and confusing Internet of Things (IoT) platforms market. But given the moment of business excitement around the IoT, have appeared new analyst firms focused on IoT who also wanted to contribute their bit and at the same time make cash while this unsustainable situation lasts.

After reading numerous reports from various sources on this topic, talking to many IoT platform vendors and seeing endless product demos, I have decided to create my own methodology that includes a questionnaire of near 100 questions around different areas: technical, functional, business, strategy, and a scoring mechanism based on my knowledge and experience to make justified recommendations to my clients.

About Super Powers Methodology

But I also had defined an alternative Methodology based on Super Powers.

Super Heroes and Super Villains usually gain their abilities through several different sources, however these sources can be divided into four categories. The Super Powers methodology is based on these four categories of Power Sources.

  • Mind Powers – Powers with notable mental abilities. Companies like IBM Watson IoI or GE Predix are notable examples.
  • Body Powers – Powers that are gained from genetic mutation. Companies like Microsoft or Amazon mutate to IaaS / PaaS IoT platforms.
  • Spirit Powers  Powers gained over time through extensive investment, and are easily obtainable by companies without the risk of horrible mutation or disfigurement. PTC Thingworx, Software AG/Cumulocity or Cisco-Jasper are examples.
  • Artefact Powers   Powers gained abilities through ancient objects such as networks, or hardware. Incumbent Telcos M2M Platforms, Telco vendors like Huawei, Nokia or Ericsson, and Hardware vendors like Intel IoT platform, ARM Beetle or Samsung Artik are examples.

For each Power Source category, Super Powers are divided into different levels of power that depend on how strong, or unique, their abilities are.

  • Level 0 -  with useless, or minimal abilities.
  • Level 1 -  they are still particularly weak compared to the higher levels.
  • Level 2 -  have developed their powers to a certain point. About 75% of the platforms belong to this class,
  • Level 3 - Mostly are most commonly amateur heroes or sly villains.
  • Level 4 - Some of the most unique with a wider variety of powers.
  • Level 5 - these fellows are seasoned veterans of their abilities, capable of using them without even needing to concentrate.
  • Level 6 - Only a few beings are classified under this level, and their powers are that of being able to control multiple aspects of IoT reality.

Whatever the source of power was, I add Sandy Carter´s recommendation: If you want to become an Extreme Innovator you also need Super Intelligence, Super Speed and Super Synergy.  

About Super Heroes and Super Villains

Previously in “Internet of Things: Angels & Demons” and “Internet of Things – Kings and Servants” , I identified some IoT Platform companies as potential superheroes. What was certain is that we knew who the supervillains were. Governments, organizations and business giants that try to control us, manipulate us and frighten us with their economic, political and military powers.

Deciding which superhero can help you more or what superpower is more important for your business is an extremely important milestone in your IoT Strategy.

I've defined the six types/categories of superheroes / IoT Platforms:

a)The superhero whose power is a birthright like Amazon AWS IoT (Superman) or GE Predix (Magneto/Professor Xavier).

b)The superhero whose power is the result of power acquisitions like PTC Thingworx (The Flash) or Cisco Jasper-Parstream (Spiderman) or Autodesk Fusion Connect (FireStorm).

c)The superhero whose power is made possible by technology like Oracle IoT (Iron Man) or SAP Leonardo(Green Lantern). 

d)There is the superhero who doesn't have any superpowers but who is a superhero by extremely intensive training like Batman (Ayla Networks) or Black Widow (Exosite) or LogMeIn-Xively (Hawkeye)

e)The superhero who obtains his/her powers due to some supernatural event like Satya Nadella named new CEO for MSFT IoT Azure (Thor) or Telit DeviceWise (Dr. Manhattan) or Google acquisition of Nest (Hulk)

f)Finally, there is the superhero, usually a sentient android, who was created by a human like IBM Watson IoT (Vision) or a normal human playing with magic like Salesforce IoT Cloud Einstein (Dr Strange) or leader of a young team like Hitachi Data System(Most Excellent Superbat)

“Do you agree with my classification system for superheroes and superpowers?”

Although the number of superheroes and supervillains is enormous (more that the IoT Platforms Universe), it would take me a long time to assign each one of the IoT platform a single superhero or supervillain. Since I do not think many companies are willing to pay to know who represents them better, at least I have done a partial and fun exercise.

The Bottom Line 

If you are an IoT Platform vendor, you could be doing yourself some questions right now:

-          If I could be a Superhero what would it be?".

-          Worth to acquire a Super Power or reach an upper level to convince customers I am their Superhero?

And remember …

“With power comes responsibility; with great power comes great responsibility”

Although the number of superheroes and supervillains is enormous (more than the IoT Platforms Universe), it would take me a long time to assign each one of the IoT platform a single superhero or supervillain. Since I do not think many companies are willing to pay to know who represents them better, at least I have done a partial and fun exercise.

Thanks for your Likes and Shares.

Read more…

Sponsor