Join IoT Central | Join our LinkedIn Group | Post on IoT Central


lte (3)

IoT is disrupting almost every industry sector including communications. As power consumption has become a challenge for IoT devices, cellular IoT has introduced some standards that are cutting-edge. Let’s take a look at those standards and their device categories.

Remember the days when the “E” icon on the notification bar of our phones used to make us excited? 

Well, if we compare that to today, technology has skyrocketed like anything. It was just a matter of time before that E icon turned to 4G LTE.

Today, there are billions of devices that run on the 4G network providing lightning-fast internet to the users. And it does not end here. The wave of 5G is ready to take on the world. Though some countries have already deployed 5G, it is yet to conquer the entire world.

Now, IoT is not a buzzword anymore. It is an awesome technology that connects various internet-enabled devices and is known to everybody. The use of IoT allows devices to share data at a faster pace. But, there is one challenge!

As these devices are connected to cellular networks like 3G and 4G LTE, they consume a lot of power. In a way, it is acceptable, but not if the devices are sending a small amount of data occasionally. So what’s the solution here? Cellular IoT!

Cellular IoT deals with some of the best IoT standards and devices that make the existing cellular technology fit for low-powered devices. If you are interested to know how; read ahead and find out!

Why are IoT LTE devices necessary?

Well, the need for IoT devices comes into the picture when we analyze applications like predictive maintenance, asset tracking, fleet management, inventory management, remote service, etc.

All these applications are backed by powerful yet sensitive devices that transmit data to ensure that all your business processes are running fine. LTE is the technology that helps them. IoT devices under LTE can be classified based on the LTE standards!

LTE-M/ Cat-M1:

This standard covers devices that run under the bandwidth of 1.4 MHz. Most of the devices under the standard are smart meters, fleet management devices, and asset tracking devices.

Cat-1:

The operating bandwidth of Cat-1 devices is 20 MHz which allows for devices like ATMs, POS terminals, and wearables to operate.

Cat-4:

The devices under Cat-4 have the maximum download and upload speed, which makes them ideal for applications like autonomous vehicles, real-time video, and in-car infotainment.

NB-IoT/ Cat-NB1:

The IoT LTE devices under NB-IoT have the maximum latency, which makes them crucial for applications like parking sensors, street lighting, industrial monitors, and more.

What are the various IoT LTE devices categories?

Well, if we talk about the device categories, IoT LTE devices can be classified into four categories based on cellular IoT standards. The newest of these four standards are LTE-M and NB-IoT.

10890697683?profile=RESIZE_710x

Let’s read ahead and find out about the IoT LTE device categories!

 

1. LTE-M/ Cat-M1

Let’s begin with the LTE-M standard. The LTE-M standard is an excellent discovery that is ideal for devices that require less power and less bandwidth. Here are some key pointers related to the device categories of LTE-M!

  • The devices based on the LTE-M standard have an upload speed of 1 Mbps, and the same is the download speed.
  • On top of that, the latency in the case of LTE-M devices is 10-15 milliseconds. The latency is enough to ensure that the required data is transmitted at regular intervals.
  • The bandwidth of the LTE-M is enough to ensure that the devices are able to function well in the prevailing 2G and 3G applications.
  • The best thing about the LTE-M standard is handoff for devices. It allows seamless handoff that makes the standard ideal for applications like asset tracking and fleet management where devices are on the move.
  • Cat-M1 was created as an integral part of Release 13 of the 3GPP’s LTE standards.

2. Cat-1

Apart from the above-described device categories, Cat-1 is a category that is a part of Release 8 of the 3GPP standard. Though it is a part of the old technology, it is still widely used across the globe. Here are some features of the Cat-1!

  • The Cat-1 standard is made for IoT device categories that have low and medium bandwidth needs.
  • The speed of the Cat-1 device is more than that of LTE-M. The upload speed of the Cat-1 devices is 5 Mbps, and the download speed is 10 Mbps.
  • One of the best things about Cat-1 is that it has less latency. The latency of the signals is just 50-100 milliseconds.
  • The Cat-1 standard uses a massive bandwidth of 20 Mhz in a full duplex. The full duplex capability of the devices allows for smooth handoff, making it ideal for wearables, ATMs, POS terminals, etc.

3. Cat-4

Well, the Cat-4 standard is what it takes to support applications like autonomous cars. The speed of devices in this standard is way more than Cat-1. It can provide you with 50 Mbps upload speed, and 150 Mbps download speed.

The best advantage of the Cat-4 standard is that it supports in-car infotainment, in-car hotspots, and video surveillance.

4. NB-IoT/ Cat-NB1

After the LTE-M, there is NB-IoT or Cat-NB1 standard. Just like LTE-M, there are many aspects that make it a bit different and unique. Here are some key pointers about the devices supporting the NB1 standard.

  • The low-cost technology makes use of DSSS modulation technology vs. LTE spread technology to ensure connectivity.
  • The cost factor of the technology is not the only USP. The devices that come under Cat-NB1 have less power consumption, offer excellent in-building coverage, and have longer battery life.
  • If we talk about the upload and download speed of the NB-IoT device category, it is relatively less compared to LTE-M. The upload speed is 66 kbps, and the download speed is 26 kbps. This is in half duplex mode.
  • The latency of NB-IoT is also more than the LTE-M. It oscillates between 1.6 to 10 seconds. Though it seems way more, there are advantages to it. The latency is ideal for small, intermittent data transmissions.
  • NB-IoT is also part of Release 13 of the 3GPP’s LTE standard. It is an LPWAN technology that works on a licensed spectrum.
  • The devices that come under this standard are smart gas, street lights, parking sensors, etc.

Other than these device and standard categories, there are two more standards:

5. Cat-0

As there is a need for low-cost devices and processes, Cat-0 lays the groundwork for that. It eliminates the need for features that require a high data rate in Cat-1. On top of all, Cat-0 is slowly doing the groundwork for Cat-M by replacing 2G.

6. EC-GSM

It is a standard that does not have as much buzz as the LTE-M and NB-IoT. But, it has been tested by brands like Ericsson and Intel for supreme practicality and modularity.

Why Do We Need To Care?

Well, if you are a cellular carrier service provider, you have to care about it. There are many factors that need to be considered while choosing the IoT LTE device category. Here is a brief elaboration of some of the critical ones!

10890699663?profile=RESIZE_710x

1. Power consumption:

Out of all the IoT LTE devices listed above, those who come under the Cat-4 consume the maximum power. After that come the devices under Cat-1. Cat-M1 and NB-IoT devices are the ones that have the minimum power consumption.

2. Battery life:

Battery life is the key factor if the devices are placed in remote locations like the agricultural field. If you are choosing LTE IoT devices, go for devices under standards Cat-M1 and NB-IoT.

3. Cost:

If cost is your concern, then again, Cat-M1 and NB-IoT are the ideal picks for you. They are best for high-volume device applications. Devices under Cat-1 and Cat-4 are more pricey.

4. Adoption:

When it comes to adoption, the adoption of LTE-M and NB-IoT are quickly being adopted by carrier service providers across the globe.

5. Latency:

Latency is the highest in NB-IoT, which makes it ideal for applications that do not need to send continuous data. LTE-M is a bit faster than NB-IoT. Cat-4 is the fastest, which makes it ideal for video applications.

Conclusion

So, now we are clear about what type of IoT devices are under each standard of LTE. LTE-M and NB-IoT are the standards that are being quickly adopted as they are low cost, consume less power, and have max battery life. To make an informed choice, it is necessary for you to analyze each aspect closely. As of now, carrier companies are inclined toward adopting  NB-IoT and LTE-M as they can serve vast applications while being balanced in all aspects.

Read more…

IoT technologies or "Internet of Things" collect and analyze information about the object, its movement, condition, and many other features. In the European Union alone there are currently more than 13.3 millions of active trackers that use this system, which is a significant growth compared to 0.7 of a million in 2016.

An object of observation will be tagged for tracking with a relatively small device that collects the necessary information and sends it to you via Wi-Fi. But how one should know which type of IoT solutions to choose?

IoT Tracking Technologies

  1. RFID tags

RFID tags use radio frequency to identify the right element or track a certain "tag". In comes in two types:

  • Passive RFID tag depends on the RFID reader to send a wave that they can use to reply. For example, to see who passes through the reader bars in the store with an unpaid product.
  • Active RFID tags have an identifier along with a battery inside, which allows it to communicate with a reader on a larger distance.
  1. BLE beacons

BLE beacons rely on Bluetooth Low Energy so they can communicate, often used inside mobile phones. They can send multiple types of signals and detect many devices around them.

Beacons come in different forms and devices:

  • Parent beacons process and collect received data, communicate with child-beacons.
  • USB beacons
  • Router-sized beacons
  • Small portable beacons
  1. NFC chips

Near Field Communication is one of IoT technologies that rely on the electromagnetic field when are very close to each other (5-20 centimeters). NFC devices interact similar to RFID, can also be active and passive:

  • Active NFC sends and receives data (for example, it's being used on smartphones)
  • Passive NFC only sends information
  1. Zigbee hardware

Zigbee was invented for more complicated communication. They create a small network in a limited area, powered by a small radio.

Zigbee chips are widely used in radios and USB interfaces among other IoT solutions. It's also famous for its low cost and power expenses.

  1. LTE advanced

Long-Term Evolution is a wireless communication technology that was developed for faster internet, bigger storage and data processing. It's mostly used by mobile phones but sadly has different regions depending on the country where the phone was produced, with no support for a different frequency.

  1. LiFi

Visible Light Communication based Light Fidelity uses diodes to communicate at the speed of light without a chance for a human to notice the signal. The signal is then received by a photodetector.

LiFi is known to be the biggest rival of WiFi, though it's limited to the reach of the light that can be stopped by an obstacle.

  1. GPS

Everyone who owns a phone is familiar with Global Positioning System, which provides geolocation at a certain time to all GPS receiving devices. While still haven't beat by its accuracy in tracking, GPS is known to be quite power-consuming because it determines an object's location in non-stop mode.

  1. LPWAN

Low Power Wide Area Networks is created for long-distance communication and uses a low bit rate. It also allows to create a private wireless network.

Here some of the LPWAN based technologies:

  • NB-IoT uses a wide range in cellular services and devices
  • LoRaWAN uses a chirp spectrum radio module along with LPWAN technology
  • DASH7 is a firmware standard with low-latency, used over LPWAN

How IoT tracking helps in your business

Which of the IoT technologies is the best suited for your business?

Commercial Organization

  • A commercial organization may track their assets using RFID tags, such as Amazon keeps track of products in their vendor places
  • BLE beacons can help understand the customers, how much time they spend in the store, which aisles they visit and how they move across them
  • NFC technologies allow your customers to pay faster with their wireless credit cards
  • Zigbee is a necessity for those who develop smart home devices
  • LiFi help you set up shop displays and show advertisements to the customers

Industrial Business

  • BLE beacons help organize the inner industrial process, track equipment, monitor assets, prevent human errors and incidents
  • NFC takes care of security and access control
  • Zigbee helps with remote monitoring in a company with a large facility. However the cost rise drastically when operating between the facilities, so it's not used
  • LTE Advanced can instantly notify of a security breach and needed maintenance, write reports, draw a map of assets real-time movement
  • LPWAN optimizes costs and energy losses and power outrage. It monitors liquid levels, energy installations, optimizes solar plants performance

Healthcare Facility

  • RFID helps manage medical equipment and monitor the room's condition. It also helps with identification badges
  • BLE beacons help with indoor navigation
  • NFC tracks the patient's location, their time of treatment and health at home
  • Zigbee can monitor patients in real-time at low-cost
  • GPS tracks down the location of an emergency case
  • Li-Fi can lag when the light is interrupted. Otherwise, it's a perfect tool since it doesn't mess with another equipment
  • LTE has a personal network for enterprises. It's a large and secure network at a hospital

Logistics

  • RFID identifies a vehicle, person, baggage and therefore is helpful at railroad, airports, and roads
  • NFC helps scan tickets and trains passes fast
  • GPS helps to locate fleet vehicles and contact them
  • Modified with LED bulbs, LiFi cars help to prevent a collision in advance
  • Paired with other technologies, LTE Advanced can monitor the flight in real-time and communicate in long-distance
  • LPWAN can trace objects in real-time, optimize routes, detect and resolve faults, road threats, and maintenance

Agriculture and Food

  • RFID is helpful with tagging and locating cattle and food
  • GPS allows to plow and place crops precisely, map and monitor the field and save costs from farming
  • LPWAN is useful for measuring the soil moisture, water levels, cattle hygiene, and gate security

A wide range of IoT object tracking technologies is created to serve different purposes. Decide among the best of IoT solutions for yourself or read more in our blog to help determine which option is the best for you.

Read more…

Originally Posted by:  

With the announcement of the Cisco Solution for LoRAWAN™, Service Providers have an integrated solution that enables them to extend their network reach to where they’ve never gone before – i.e., offering IoT services for devices and sensors that are battery powered, have low data rates and long distance communications requirements. The solution opens new markets and new revenue streams for Service Providers, and can be deployed in a wide range of use cases in Industrial IoT and Smart City applications such as:

  • Asset Tracking and Management
  • Logistics
  • Smart Cities (e.g., smart parking, street lighting, waste management, etc.)
  • Intelligent buildings
  • Utilities (e.g., water and gas metering)
  • Agriculture (e.g., soil, irrigation management)

AU43170

Our Cisco Mobile Visual Networking Index estimates that while LoRa is in its early stages now, these types of Low Power Wide Area connectivity means will quickly gain traction and that by 2020, there will be more than 860 million devices using it to connect.  One of the reasons for such forecasted aggressive adoption, especially in North America and Western Europe, is that LoRa® works over readily available unlicensed spectrum. Cisco is a founding Board member of the LoRa® Allianceformed in January, 2015, with a goal to standardize LPWA Networks in order to stimulate the growth of Internet of Things (IoT) applications.

Cisco has been working with a number of Mobile Operators who are trialing and deploying LoRa® networks to target new low-power consumption IoT services such as metering, location tracking and monitoring services. Many Mobile Operators are looking at LoRa® as complementary to NarrowBand IOT (NB-IOT), an upgrade to current mobile networks that drops the transmit power and data rates of the LTE standard to increase battery life. As NB-IOT networks, devices, and ecosystems will not be commercialized until 2017, LoRa® gives Operators (and all SPs, in fact) a way to gain a head-start on offering new IoT services based on various new low cost business models.

Cisco’s approach to IoT is to deliver integrated solutions that enable SPs to support different class of services aligned with specific pricing models across unlicensed (Wi-Fi, LoRa) and licensed (2G/3G/LTE, and soon, NB-IoT) radio spectrum as demanded by the IoT application. Our multi-access network strategy for IoT is complemented by the Cisco Ultra Services Platform (USP) – our comprehensive, virtualized services core, which includes mobile packet core, policy and services functions. Cisco USP delivers the scalability and flexibility that Operators focusing on IoT need as more and varied “things” get connected to their networks.

Cisco continues to integrate and evolve solutions such as LoraWAN™ to help Service Providers of all types capitalize on new IoT opportunities and transform into next-generation IoT Service Providers.

Read more…

Sponsor