Join IoT Central | Join our LinkedIn Group | Post on IoT Central


Platforms (277)

Bad Cars: Anatomy of a Ransomware Attack

By Alan Grau, VP of IoT, Embedded Systems, Sectigo

TV and science fiction writers have let their imaginations run wild with theories about what could happen if your car was attacked by bad actors. There have been a few real-world cases where white-hat hackers and researchers have been able – in limited, controlled instances – to actually penetrate a car’s electronics and communications systems, take over the car’s steering and acceleration systems, and potentially do real damage.

However, there are other scenarios that might not be as obvious or as dramatic.

For example, what if your car’s computer was infected by a virus that greatly reduced the engine’s efficiency or capped the car’s maximum driving speed? What if the virus did something less dramatic, such as make the car unable to lock the controls for automatic window operation, or simply prevent the car from starting? No one would die, but the car owner would be very upset, posing a disaster for the automobile’s manufacturers.

3239139993?profile=RESIZE_710x

Motor City Ransomware

Electric Vehicles require sophisticated control and safety technologies for their electrical power systems to safely manage the high voltages that store and distribute from their battery systems. If something goes wrong, the car cannot operate, people could get electrocuted, or the car could burst into flames or explode. These are real dangers that are managed by the car’s network of fuses, circuit breakers, and control systems.

What would happen if a cyber hacker got into these sensitive electronic systems and turned off the safety and control system?

Why would someone do this? Money, of course.

Suppose the bad guys successfully penetrated and infected these vehicles? Imagine now that they had the software or security keys that could fix these problems, but hold them as ransom, jeopardizing an automaker’s entire fleet of new cars.

How many millions (or tens of millions) of dollars would the automaker pay to get that solution? Holding a manufacturer hostage is a very real possibility, as evidenced by the results that today’s hackers are getting by attacking hospitals and cities and successfully extracting substantial ransoms to just return these institution’s data. In a recent WIRED article, The Biggest Cybersecurity Crisis of 2019 So Far, which discusses the risks to “things” and across supply chains, the FBI explained, "We are seeing an increase in targeted ransomware attacks. Cyber criminals are opportunistic. They will monetize any network to the fullest extent.”

Pre- and Post-Assembly Infections

It is possible that cars could be infected before they even hit the auto dealers’ lots. Bad actors have the capability to infect a small electronic part, essential to the auto manufacturing food chain, purchased from one of the hundreds of component suppliers.

How could auto manufacturers possibly test each electronic element? It is almost impossible - and requires that parts manufacturers themselves take more care in their software development process to ensure the software in these components are not infected during manufacturing process, or during the testing and shipping processes.

Of course, cyber infections could happen on the actual assembly line where the cars are put together. With many car manufacturing plants using IoT connected robots and machines, there is always a possibility of infection happening on the assembly line.

These components could even become infected after assembly, during the manufacturers’ testing and process. Infection, during installation, or with after-market parts and upgrades, could arise after the vehicles arrive at the dealers’ facilities.

Already aware of the possibility and the potential disastrous effects of infected cars reaching the market, manufacturers throughout the supply chain need to become more aware of how their devices could be attacked and infected even before they leave the warehouse. This means embedding IoT security from day one - from the smallest electronic components to final assembly of motors, transmissions and other large vehicle components.

About Sectigo

Sectigo (formerly Comodo CA) provides award-winning, purpose-built and automated PKI management solutions to secure websites, connected devices, applications, and digital identities. As the largest commercial Certificate Authority, trusted by enterprises globally for more than 20 years, and more than 100 million SSL certificates issued in over 200 countries, Sectigo has the proven performance and experience to meet the growing needs of securing today’s digital landscape. For more information, visit www.sectigo.com.

 

 

 

Read more…

Scaling IoT to meet enterprise needs

Enterprises are increasingly complementing their cloud-based IoT solutions with edge computing to accelerate the pace of data analysis and make better decisions, faster.

Just a few years ago, many expected all the Internet of Things (IoT) to move to the cloud—and much of the consumer-connected IoT indeed lives there—but one of the key basics of designing and building enterprise-scale IoT solutions is to make a balanced use of edge and cloud computing. Most IoT solutions now require a mix of cloud and edge computing. Compared to cloud-only solutions, blended solutions that incorporate edge can alleviate latency, increase scalability, and enhance access to information so that better, faster decisions can be made, and enterprises can become more agile as a result.

That being said, complexity introduced by edge computing should justify the objectives at hand, which include scale, speed, and resiliency. A choice that goes too far in one direction typically introduces substantial operational complexities and expenses. Ultimately, the enterprise should take into consideration a full range of factors that reflect its own particular objectives in designing and building an IoT solution in the first place.

In this article, we discuss when and how enterprises can optimally make use of both the edge and the cloud in their IoT solutions. We explain the roles edge and cloud computing play, why the edge may be needed, and how to approach selecting a solution. We also explain some of the complexities with edge computing and provide some use cases.

The cloud explosion and the latency challenge: Enter edge computing

We have experienced a veritable explosion of cloud adoption in the past decade—the IT functionality of many modern companies exists exclusively, or in large part, in the cloud. Among the many benefits of the cloud infrastructure are cost effectiveness, scale, self-service automation, interoperability with traditional back-office systems, and centralized functionality.

At the same time, the amount of sensor-generated data has grown strongly too, and this trend is expected to continue in the years ahead. Because data can become essentially valueless after it is generated, often within milliseconds, the speed at which organizations can convert data into insight and then into action is generally considered mission critical. Therefore, having the smallest possible latency between data generation and the decision or action can be critical to preserve an organization’s agility. However, as the speed of data transmission is inviolably bounded by the speed of light, it is only by reducing the distance that data must travel that the latency challenge can be mitigated or avoided altogether. In a cloud-only world the data ends up traveling hundreds or even thousands of miles, so where latency is critical to a solution, edge computing can become key.

According to one estimate, as much as 55 percent of IoT data could soon be processed near the source, either on the device or through edge computing. Indeed, scale plays a big role in this likely shift—growing data demands will likely put the focus on latency, and decreased latency could dramatically improve the response time, thereby saving both time and money.

Continuing reading more by Deloitte's Ken Carroll and Mahesh Chandramouli here.

Read more…

Newest Trends For Internet Of Things

Now that the Internet of Things has become a social and technical phenom, it is time to check out some of the coming year trends for app developers and the Internet of Things.

Due to the massive amounts of data that is able to be moved through the Internet of Things airways, app developers will continue to develop apps that help as far as artificial intelligence and machine learning. It is not because of the massive amount of information and data that is sent through, rather because of the amount, app developers are working on applications that are able to make logical sense from the information and data.

Storing information and data in the cloud has become firsthand to people and businesses alike. Due to the high amount of bandwidth required to save information in the cloud, businesses are looking for ways to expand on the cloud. All have used private clouds, public clouds and even a private data center, however app developers are working on ways to combine all of those options. When looking for ways to streamline all the business needs, connected clouds are becoming more of a trend. App developers are designing more of a multi-cloud habitat for information and data.

There is a simulation tool that works alongside machine learning, or artificial intelligence. The DTT, Digital Twin Technology is known as a hybrid twin, is a virtual imitation of real products, processes, system or asset used for certain purposes.

Although cloud storage will remain popular in use, app developers are getting real close to edge architecture. This brings the centralized system and the cloud to a further expansive advantage. Not only cheaper but able to be more effective, edge architecture is able to store more data in a micro center.

This is the year of advancement for the 5G mobile devices and their improvements. Last year we witnessed 5G brought to life in applications. Now we see that the new 5G cellular networks will gain massive attention in the Internet of Things. Which will ultimately begin the change of the landscape for the IoT?

We are facing the age of Social acceptance or denial for the Internet of Things. The longer that the Internet of Things develops, the more we will find that some groups are questioning the social, ethical and legal issues. This is because the Internet of Things is very broad-based and capable of changing all business areas.

Infonomics is moving data ownership or monetization to brand new heights. All this data in the Internet of Things will become more of an asset.

The user experience of the Internet of Things is going to be led by factors such as new sensors, new experience edge architecture and context, and of course new and different algorithms. We will then need to adopt new ways without the use of screens or keyboards, and definitely no voice assistant.

There will also be a massive increase of the Smart Homes. App developers have increased the Smart apps that we use, and are developing apps that will make our homes interact with people. Imagine a world where the home is not only where the heart is, but also the home that directs it’s people on what to do.

This means it will not be too far off before app developers have found a way to make smart cities or smart towns. This possibility that the Internet of Things can mix with responsive cities to lighten the traffic congestion, improve the safety in its community and also look for ways to maintain sustainability.

It is also coming closer to the time when the Internet of Things combines with Artificial Intelligence and we produce the robotic assistants. They will help make all critical decisions that need to be made. This self-learning system will read all analytics and derive any important changes.

App developers already have created many apps for Artificial Intelligence. There is a little robot like ‘friends’ that will assist in teaching your children, they interact with the child and some can have little conversations with the child.

A huge improvement that will be soon possible with the help of app developers is what we can call predictive maintenance. This can prevent the labor costs associated with routine maintenance when it is not necessary. Predictive maintenance could be intelligent apps designed by app development companies to notify before maintenance is needed. This could be helpful in automation businesses as a warning before there is a big issue or major break in a piece of equipment. Maintenance will only be necessary when any change is noted in the process or working gears of the machines.

The benefits of predictive maintenance or predictive skills will help auto and health insurance industries to lessen risks or have payouts when the vehicle, home or health issue would have been maintained as needed.

It may not be too far into the future when we are living like George Jetson and his family did, in the days of our youth and on the television. Was that truly foresight, or just a dumb cartoon made up for kids to laugh at? All the technology that has developed to this point, and app developers continue to make our lives easier with smart apps, I do truly think we are very near George Jetson and his wife. Maybe we will be in flying cars real soon too? Dare we say that we do have skywalks, and some automated ones.

Read more…
The recent advent of additive manufacturing for printed electronics, for example, has made engineering and design labs game-changing R&D enablers. Engineers will soon find themselves able to quickly, accurately and cost-effectively design and build functional electronics in new shapes with added functionality without having to wait weeks or months to understand whether their smart device works or not. The greater design freedom, compressed project timelines and fully in-house workflows afforded by 3D printing are setting the stage for the long-awaited IoT revolution. These advantages ultimately increase product and cost efficiencies and reduce time to market, meaning consumer can enjoy the benefits of these products faster than ever before.
Read more…

Considering that the IoT is in its infancy and due to the last years wasted in predictions that have not been fulfilled, in disappointing statistics of successful projects and with most companies without clear strategies, it is normal to think that R & D is today so necessary for boost and accelerate this increasingly sceptical market.

R&D should be an essential part of bringing innovation to any company via IoT projects. And though we can all agree how important R&D is, it requires a great deal of experience, senior experts, and specific toolsets—resources that not every company can say they have handy.

However, there is a risk when deriving the strategic decisions that the executive directors consider to be technological towards the R & D departments. Many times, oblivious to the reality of the markets, those responsible for R & D with the invaluable aid of the subsidies of the different Administrations, they launch to develop products and technologies for problems that do not exist, just for the fact of obtaining recognition or to continue living without pressures of the Top Management. I am enemy of granted subsidies granted most of the time by unqualified Administration organisms that does not understand that need to prevail the utility, the business model, the business case and the commercialization over the innovation that R & D said to be developed.

Now, if we ask the sellers of IoT technology, products and services, they may not be so happy with the idea of having to talk with the R & D areas instead of with other areas of the company more likely to buy. Most time, R &D departments decide to do it themselves. Vendors know, that with great probability, they will not to close deals due to lack of budget of the R &D or the low visibility of this area by the rest of the departments of the company.

The Importance of R&D for the Internet of Things

Innovation in IoT is a major competitive differentiator. See below some advices to have a decisive advantage over competitors:

  • IoT-focused companies need to invest in R&D to keep up with the rapidly changing and expanding market. It is important that an organization’s R&D iteration turn times are quick, otherwise the company is not going to be able to keep pace with the expected IoT market growth. However, it’s not enough to simply speed up R&D—innovative IoT firms, both start-ups and established companies, must also make sure their R&D processes are extremely reliable.
  • You can’t solve R&D speed issues just by increasing budget.
  • Executives must maintain strong, steady communication with R&D regarding the department’s priorities over a particular time frame and how progress will be measured.
  • Guidelines are invaluable: The more structured and streamlined R&D procedures are, the better IoT companies will be able to move from conception to delivery.
  • Design innovative IoT products but accelerate time to market.
  • Internal collaboration: R&D team should share real-time data across internal departments to spur intelligent product design
  • External collaboration: Connect with customers and partners to ensure success
  • Differentiation: Drive overall business value with IoT.

 

 

Outsource or not Outsource R & D for your IoT project

Just like any other technology, IoT products and solutions require thorough research and development, and it better be done by professionals. Despite the noise generated by analysts and companies around the IoT, the reality is that there have not been many IoT projects and therefore it is not easy to find good professionals with proven experience in IoT to hire.

When I think of Outsourcing IoT projects, Eastern European and Indian companies immediately come to my mind. No doubt because the R & D talent seems to be cheaper there. Spain could also be a country to outsource IoT, but at the moment I do not see it.

The benefits of Outsourcing R&D for IoT Projects:

  • Expertise and an Eye for Innovation
  • Bring an IoT Project to Market Faster
  • Optimize Your Costs
  • Control and Manage Risks

I am not sure about the quality of most of these companies or the experience of their teams in the development of IoT products or in the implementation of IoT projects, but there is no doubt that there are benefits to Outsource R & D for some IoT Projects. You should select any of these companies after a careful evaluation.

Recommendation: Do not stop your IoT projects if you do not have the skills and professionals in house. Luckily, there are companies who offer outsourcing R&D for IoT projects.

Note: Remember I can help you to identify and qualify the most suitable Outsource R&D for your IoT project.

Spain is not different in R & D for IoT

I have not believed in R & D in Spain for years. There are exceptions without a doubt, but it seems evident that the prosperity and welfare of Spain is not due to our R & D. Fortunately we have sun and beach and a lot of brick to put in houses that are not sold because of high prices and low wages.

With the entry into the EU, I thought that we had great markets open to us. I was also optimistic that we would have great opportunities in the Latin American market, thanks to the fact that our research and development capacity would have been consolidated effectively in our companies and universities because it would be profitable and worldwide recognized.

But it has not been that way. The technology developed in Spain and more specifically that relating to the IoT has little chance of being commercialized in France, Germany and not to mention in the UK. If we add the development gap of the countries of South America and that our local market is averse to technological risk, it is difficult to flourish R & D in IoT or Industry 4.0 here in our lovely Spain.

That does not mean that we do not have public R & D budgets for these areas. What happens is that the same thing that happened during the last 30 years has happened. The incentives and aids are few and for the most part used to finance large companies with little return to society. There is no rigorous control of the aid granted and, above all, there is no plan to encourage the local and global marketing of the products developed with the talent of our scientists and researchers.

I have stopped believing and trusting in our successive Governments for the change in R & D but there are exceptions that are worthwhile to follow and work with them. For this reason, I continue help them demonstrate that “SPAIN CAN BE DIFFERENT”.

Key Takeaway

After years of unfulfilled expectations, companies are sceptical of the potential growth of the IoT market or the benefits in their business. R&D department can be a cure to boost IoT initiatives but also a poison to kill IoT initiatives.

 

IoT may have started in R&D, but their benefits don’t have to end there. To drive overall business value, it’s important to share IoT data – both internally and externally. Facilitating open collaboration, discovering new ways to innovate products, and accelerating time to market, you can differentiate R&D and your business.

As fast turn times and reliability becomes a focal part of companies’ R&D processes, these companies will be well-positioned to thrive within the IoT market.

Thanks for your Likes and Comments

Read more…

When you have the responsibility of ensuring a manufacturing plant is operating at its full potential at all times, talk of “Industry 4.0” and “industrial automation like never before” might be exciting but far-fetched. Industry 4.0 is just an empty phrase used by marketers who want to take your money, right?

Maybe in some cases, but the ideas behind the buzzy terms can actually give you an edge over competitors. Industry 4.0 is not a phase, but it’s also not an obligation that you need to “opt in to” 100% right away.  Industrial automation is a combined result of our greater digital capacities, smarter machines, and improved cross-channel communication that have accompanied the digital age.

In 2019, the technology is here: from decentralized cloud systemsto self-correcting and self-directing machines. However, it’s not everywhere yet, and most plants are simply taking baby steps towards preparing their lines to be as compatible as possible to these new technologies so that they can gradually work their way in. Industry is slowly moving towards a more optimized, efficient, automated structure, but this transition will be happening in the industrial world over the next few decades.

What do those “baby steps” look like? Where should begin to optimize lines in the most cost-effective, long-term ROI benefits?  We have compiled a list of 5 relatively simple ways you can take this year to set your plant up for new “Industry 4.0” industrial automation technologies:

1. Integrate a Single Virtual Server

Managing the IT aspect of your plant is difficult when you need to find cost-effective storage and data processing solutions for your company that also comply with all of the regulations and contingencies of your industry. However, upgrading a server to a virtual option is probably the most important upgrade you can do to get started on the road to future industrial automation applications that use a truly decentralized communication with virtual operating system.

If your plant currently runs exclusively on physical servers, you don’t need to go virtually all at once. The wonderful thing about industry 4.0 is that much of the software integrations available will integrate with your existing hardware. You can invest in one virtual server, and then layer software integrations on to it over time.

By starting with a single server, you can cut costs, maintain a realistic learning/adaptation curve, and try out a virtual server option without committing 100% to a change. There are numerous virtual server options available, so talk to a process automation expert about what server will work best for your plant, and which server to upgrade first.

2. Get Basic Industrial Automation Security – Two-Factor Authentication

With increased adaptability and communication on virtual servers comes increased cyber threats, and unfortunately, there is no way around this. One of the easiest and fastest upgrades you can do for your company is to implement two-factor authentication (2FA) for all employees. A simple password is no longer anywhere near secure enough to protect your employees and your data.

Luckily, everything from Twitter to Cloud servers now offer 2FA options, it’s usually just a question of getting the settings implemented correctly and creating a protocol that requires every employee to use 2FA at all times. It may seem tedious or frustrating at first, but this is a small habit that can make a huge difference in your cyber security and overall functioning of your plant.

3. Make Your Next Machine Purchase a Smart Machine

You probably aren’t yet at the point of having a completely automated assembly line of smart machines that create highly customized orders while communicating with and correcting each other (like the assembly line in this German plant.) However, smart machines do exist, and if you are getting ready to purchase a new machine, finding one that has automation, optimization, and decentralized communication abilities will be a great investment in your plant’s future.

Customizable “smart machines” are virtually independent of a human operator. The ability of these machines to adapt to the demands of individualized production requirements allows for scalable, lean production processes. In other words, with these new machines, you can produce a larger variety of products faster than ever before.

If your current machines are working fine, there is no need to replace them with smart machines right away. But from this point forward, it is a good idea to consider buying a smart machine for your next upgrade. Don’t be afraid to use an automation integrator to advise you on the appropriate machine, technology, and compatibility with existing plant automation systems.

4. Implement Technology Upgrades that Overlay or Automatically Integrate Existing Plant Industrial Automation

Be choosy about the automation products you decide to implement into your current systems moving forward. You want applications that both set your systems up for future technology integrations and help move you away from expiring legacy applications.

This shouldn’t mean replacing all your old applications, programming, and platforms all at once other. Most Industry 4.0 automation tools are created in an “overlay” style, meaning they are created to be able to function on top of your existing processes and are not supposed to disrupt everything you have already built.

Embracing a new software or system should never mean that you have to throw away your existing processes and start from scratch. If this is how you feel when you are getting ready to purchase a new software, machine, or server then it probably isn’t the right product for your company.

Talking to an expert about what products will work best with your current setup is a good idea before making any changes to your industrial automation. At my company, EPIC systems, we've seen the difference that selecting the right product solutions has made for hundreds of process automation projects — it's a key step for any manufacturing plant. No matter who you work with, you don't want to bypass this step.

5. Optimize One of Your Plant’s Processes

Divide and conquer, as they say. Just as it is best to upgrade one server at a time, it is helpful to focus specifically on one plant process at a time when you are looking to optimize and automate your plant.

This could mean focusing on optimizing your shipping procedure or optimizing one assembly process. The important thing to remember is that as you do this “experimental optimization” you are not just looking for an impressive return on investment, you are also looking to get your entire team comfortable with the automation and ready to embrace even more. This is why the “how” is just as important (if not more important) than the “what” when it comes to choosing a process to optimize. Go slow, be transparent, and include everyone in the process so that it is a success all around.

Industry 4.0 is creating a world where employees can delegate mundane tasks to smart machines and rely on highly communicative, agile systems in order to work faster and more effectively than ever before. There is no reason for any manufacturing plant to be left behind in this industrial evolution, with numerous products and services available to help walk you through the industrial automation process gradually and intelligently.

Read more…

We’ve heard a great deal about the Internet of Things (IoT) and how it’s going to change the face of business as we know it. However, the Industrial Internet of Things (IIoT) goes a step further, particularly with reference to how smart sensors and actuators can enhance and improve the manufacturing and industrial processes. So, what exactly is the IIoT and how will it really change every business? Read on to find out more.

 

What is Industrial IoT?

To put it simply, the IIoT aims to dramatically improve efficiency and productivity within the industrial industry. It leverages the power of smart machines and sensors to take advantage of the data that machines have produced in industrial settings since they began. The combination of real-time analytics and smart machines is not only better than humans at capturing data, but it’s also more accurate in reporting the information.

How it Works

Though it sounds rather complicated, in practice, it’s really quite simple. This network of intelligent devices will work together to monitor, collect and analyse data. It works like so:

  • The intelligent devices gather information
  • They then transmit this to the data communications infrastructure
  • It’s converted into actionable information for humans
  • This can be used for routine maintenance as well as optimising business processes

 

IIoT vs IoT – What’s the Difference?

IIoT and IoT undoubtedly have plenty in common, from cloud platforms, sensors and connectivity to machine communication and analytics. However, there are a few differentiating factors. For example, IoT applications connect devices across multiple fields – between healthcare, agriculture and enterprise for instance. IIoT, on the other hand, only connects machines and devices within specific industries such as oil, gas and manufacturing.



What Are the Benefits?

Though the technology has received inordinate amounts of funding, technical due diligence is still frequently required from some sceptics. On the whole, however, there are many positives that investors simply cannot ignore.

One of the main benefits is the aforementioned predictive maintenance. This will almost allow industrial businesses to operate like clock-work. It will predict faults in machinery before they actually happen, allowing for swift work in fixing any issues. This prevents losing any time from production due to a defective machine which may have previously cost the business money.

A further benefit is asset tracking. Now, suppliers, manufacturers and even customers can use asset management systems to monitor the location and status of products throughout their life cycle. This will include everything from manufacturing to dispatch. It can send alerts to various stakeholders if it’s thought that the product might be damaged, allowing them to take preventative action before it’s too late.

What is the Future of IIoT

Interestingly, the top three industries investing in IIoT are transportation, manufacturing and utilities. Where some businesses may be reluctant to adopt new technology, it seems that the IIoT is different. It’s an exciting prospect, which continues to accumulate more appeal across the globe as it develops. Time will tell just how quickly this technology will change the way many industries operate.



Read more…

The State of Industrial IoT Adoption

According to global management consulting firm Bain & Company, long-term prospects for the industrial Internet of Things remain ambitious. However, many executives are resetting timeline expectations for reaching scale due to early adoption struggles. Notably, certain “darlings of IoT” like predictive maintenance have not lived up to the hype. And while Bain’s survey of 600 industrial customers shows increasing traction with ‘workhorse’ scenarios like remote monitoring and asset tracking, it exposes areas where many teams and vendors are struggling to deliver the goods. In the end, an iterative strategy focused on specific business outcomes remains critical.

Notably, Bain’s survey finds increasing concerns around integration with existing enterprise systems and data portability. Executives worry their visions for digital transformation will be restricted by internal skill gaps and proprietary vendor services. Understandably, they fear losing control of any data not managed by their own enterprise IT departments. Despite this, confidence remains high that an estimated 20 billion devices will be successfully connected by 2020.

Many executives feel the value proposition for industrial IoT is still emerging. For them, the ability to capitalize on this value and achieve better business results remains elusive. To address these challenges, Bain calls for organizations to build a new operating model and position themselves for long-term success in a connected world.

Recommendations for accelerating IoT adoption in the enterprise

First, Bain recommends industrial organizations choose specific, high-value use cases to tackle upfront. Prove out your ability to address security and other valid IT concerns. Then, adopt an iterative approach for demonstrating ROI and ease of enterprise integration.

Second, use experienced partners to address your gaps. Don’t try building everything yourself. Differentiation comes from the combination of acquired data with your industry-specific domain knowledge. We’ve seen manufacturing digital transformation initiatives stall out when internal engineering teams try to build their own IoT infrastructure. Software for collecting data (and system integration services) can be bought. Build your value, not your tools.  

Third, don’t expect overnight success. You’re building up organizational capabilities and working with a new set of specialized partners. Commit to a realistic investment timeline and prepare for change. You’ll likely need to bring in new, more entrepreneurial talent to drive your connected business model. At a minimum, empower your existing teams to think differently. Remember, you’re not rolling out a new CRM application. You’re transforming your enterprise. Act accordingly.

Fourth, industrial IoT revenue starts at the top. Executives must ensure the entire organization is aligned for transition to the new operating model. This requires both vision and clear communication. Unsurprisingly, those responsible for existing products and revenue streams fear cannibalization. Furthermore, IoT initiatives take time to meet traditional P&L requirements. If executives don’t create an environment where the new operating model can take root, prevailing forces will prevent its maturation while competitors move ahead.      

Prepare to scale the business

Eventually companies reach the point on their digital transformation journey where they’ve proven out their connected product technology and business concepts. Now what? Bain concludes with a method for assessing readiness to scale up your industrial IoT efforts.

To begin, how well do you understand the full potential of industrial IoT to your enterprise? IoT can dramatically impact the quality of manufactured products, service offerings, maintenance  procedures, and other areas of your enterprise. But what will this cost, and what will revenue look like once the system is deployed to production and fully commercialized?

Never forget, your competitors aren’t standing still. You can be sure they’re working on their own industrial IoT initiatives. What is your plan to win in this new arena?

Additionally, scaling IoT requires incentives alignment and coordinated execution across the enterprise. Engineering, IT, service, sales, and business teams must work together for organizations to realize the benefits of digital transformation. Make sure everyone understands their part and is rowing in the same direction.

Bain summarizes their last recommendation with a sentiment that we refer to as “strategy over software.” By strategy, we mean not just a plan, but a comprehensive roadmap, organization structure, and business model across the enterprise to support the success of your industrial IoT initiative.

Digital transformation is a journey

As you start your journey, you’re going to need an industrial IoT platform. Whether it makes sense to build your own or buy one depends on a variety of factors. But digital transformation isn’t just about technology. As Bain notes repeatedly, it’s about so much more. Business models and sales strategies, along with clear user stories, team roles, and responsibilities are equally critical to successful IoT initiatives. Beyond a platform, an experienced digital transformation partner can accelerate planning, implementation, and successful commercialization of your connected systems.

 
Read more…
The benefits of using Edge Computing / Machine Learning solutions are very attractive to manufacturers because allows minimize latency, conserve network bandwidth, operate reliably with quick decisions, collect and secure a wide range of data, and move data to the best place for processing with better analysis and insights of local data.
Read more…

The concept of connecting objects with the internet is the Internet of Things. It was conceived in order to establish a direct amalgamation between the virtual world and the physical world. Internet of Things is useful in the way that it recovers concrete data and information and makes them useful by offering economic benefits and improving the daily life as well.

The time has now come where people and IoT app developers have started to understand the importance of this technology and are working towards achieving greater goals with it. Tech giants have started to adopt this technology and work on developments. Here are some major reasons why they are doing it.

  1. Windows 10 IoT Core. .NET is fully compatible with Window 10 IoT Core. The system for Windows 10 was released in 2015 and was designed specifically in a way that runs on low-power devices. One great thing about this is it’s free. It comes along with a handy toolkit. There are lots of integration options. .NET Core can be extremely helpful in creating great IoT apps. They offer a pretty smooth UX.

  2. .NET Readymade Solutions. Almost every coding problem or issue is developed or resolved and has a solution somewhere over the internet. .NET helps developers in a great way making use of unfinished solutions and saving their time. So if you face a problem finding an IoT solution, it is very likely that someone has already found a solution for it and the code must have been posted somewhere over GitHub. .NET is a large community and the number reusable code it produces is also huge. This can help in speeding up the development process. This is why .NET is a great option.

  1. Microsoft Azure. Microsoft Azure is known as one of the best available enterprise-class platforms. It is of great use for IoT users. Microsoft not only provides the Azure IoT platform and IoT accelerators, but also recovery and data storage in addition to that. Some of the most important features of an IoT platform are security, analysis, interoperability, and flexibility. These features help the IoT developers in a great way.

Microsoft Azure is a cloud platform that is both secure and reliable. It offers several services. Deploying cloud applications is pretty easy by simply setting up an application host or running it on the Azure panel. Azure technology is being continually worked upon by the Microsoft engineers. Many new features will be added and those updates will come out soon.

Conclusion

For any technology, it is extremely important to have a supportive community that offers help whenever required. .NET has that kind of community. There are more than two million people working on .NET, so you imagine the number of people ready to help you and offer advice in the community.

IoT will see immense growth in the coming years, considering the demand for such technology. When that happens, all the work done on it right now will then prove to be useful. .NET is the preferred environment for creating IoT apps and there is no doubt in that.

 

Read more…
RSS
Email me when there are new items in this category –

Sponsor