Join IoT Central | Join our LinkedIn Group | Post on IoT Central


machine learning (24)

Machine Learning is the foundation for today’s insights on customer, products, costs and revenues which learns from the data provided to its algorithms.
Some of the most common examples of machine learning are Netflix’s algorithms to give movie suggestions based on movies you have watched in the past or Amazon’s algorithms that recommend products based on other customers bought before.
Typical algorithm model selection can be decided broadly on following questions:
·        How much data do you have & is it continuous?
·        Is it classification or regression problem?
·        Predefined variables (Labeled), unlabeled or mix?
·        Data class skewed?
·        What is the goal? – predict or rank?
·        Result interpretation easy or hard?
Here are the most used algorithms for various business problems:
 
Decision Trees: Decision tree output is very easy to understand even for people from non-analytical background. It does not require any statistical knowledge to read and interpret them. Fastest way to identify most significant variables and relation between two or more variables. Decision Trees are excellent tools for helping you to choose between several courses of action. Most popular decision trees are CART, CHAID, and C4.5 etc.
In general, decision trees can be used in real-world applications such as:
·        Investment decisions
·         Customer churn
·        Banks loan defaulters
·        Build vs Buy decisions
·        Company mergers decisions
·        Sales lead qualifications
 
Logistic Regression: Logistic regression is a powerful statistical way of modeling a binomial outcome with one or more explanatory variables. It measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution.
In general, regressions can be used in real-world applications such as:
·        Predicting the Customer Churn
·         Credit Scoring &  Fraud Detection
·        Measuring the effectiveness of marketing campaigns
 
Support Vector Machines: Support Vector Machine (SVM) is a supervised machine learning technique that is widely used in pattern recognition and classification problems - when your data has exactly two classes.
In general, SVM can be used in real-world applications such as:
·        detecting persons with common diseases such as diabetes
·        hand-written character recognition
·        text categorization – news articles by topics
·        stock market price prediction
 
Naive Bayes: It is a classification technique based on Bayes’ theorem and very easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods. Naive Bayes is also a good choice when CPU and memory resources are a limiting factor
In general, Naive Bayes can be used in real-world applications such as:
·         Sentiment analysis and text classification
·        Recommendation systems like Netflix, Amazon
·        To mark an email as spam or not spam
·        Facebook like face recognition
 
Apriori: This algorithm generates association rules from a given data set. Association rule implies that if an item A occurs, then item B also occurs with a certain probability.
In general, Apriori can be used in real-world applications such as:
·        Market basket analysis like amazon - products purchased together
·        Auto complete functionality like Google to provide words which come together
·        Identify Drugs and their effects on patients
 
Random Forest: is an ensemble of decision trees. It can solve both regression and classification problems with large data sets. It also helps identify most significant variables from thousands of input variables.
In general, Random Forest can be used in real-world applications such as:
·        Predict patients for  high risks
·        Predict  parts failures in manufacturing
·        Predict loan defaulters
The most powerful form of machine learning being used today, is called “ Deep Learning”.
In today’s  Digital Transformation age, most businesses will tap into machine learning algorithms for their operational and customer-facing functions
Read more…

A smart, highly optimized distributed neural network, based on Intel Edison "Receptive" Nodes

Training ‘complex multi-layer’ neural networks is referred to as deep-learning as these multi-layer neural architectures interpose many neural processing layers between the input data and the predicted output results – hence the use of the word deep in the deep-learning catchphrase.

While the training procedure of large scale network is computationally expensive, evaluating the resulting trained neural network is not, which explains why trained networks can be extremely valuable as they have the ability to very quickly perform complex, real-world pattern recognition tasks on a variety of low-power devices.

These trained networks can perform complex pattern recognition tasks for real-world applications ranging from real-time anomaly detection in Industrial IoT to energy performance optimization in complex industrial systems. The high-value, high accuracy recognition (sometimes better than human) trained models have the ability to be deployed nearly everywhere, which explains the recent resurgence in machine-learning, in particular in deep-learning neural networks.

These architectures can be efficiently implemented on Intel Edison modules to process information quickly and economically, especially in Industrial IoT application.

Our architectural model is based on a proprietary algorithm, called Hierarchical LSTM, able to capture and learn the internal dynamics of physical systems, simply observing the evolution of related time series.

To train efficiently the system, we implemented a greedy, layer based parameter optimization approach, so each device can train one layer at a time, and send the encoded feature to the upper level device, to learn higher levels of abstraction on signal dinamic.

Using Intel Edison as layers "core computing units", we can perform higher sampling rates and frequent retraining, near the system we are observing without the need of a complex cloud architecture, sending just a small amount of encoded data to the cloud.

Read more…

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome. It will play a big part in the IoT. From our friends at R2D3 is a very interesting visual introduction to machine learning. Check it out here

Read more…

As we move towards widespread deployment of sensor-based technologies, three issues come to the fore: (1) many of the these applications will need machine learning to be localized and personalized, (2) machine learning needs to be simplified and automated, and (3) machine learning needs to be hardware-based. 

Beginning of the era of personalization of machine learning

Imagine a complex plant or machinery being equipped with all kinds of sensors to monitor and control its performance and to predict potential points of failure. Such plants can range from an oil rig out in the ocean to an automated production line. Or such complex plants can be human beings, perhaps millions of them, who are being monitored with a variety of devices in a hospital or at home. Although we can use some standard models to monitor and compare performance of these physical systems, it would make more sense to either rebuild these models from scratch or adjust them to individual situations. This would be similar to what we do in economics. Although we might have some standard models to predict GDP and other economic variables, we would need to adjust each one of them to individual countries or regions to take into account their individual differences. The same principle of adjustment to individual situations would apply to physical systems that are sensor-based. And, similar to adjusting or rebuilding models of various economic phenomena, the millions of sensor-based models of our physical systems would have to be adjusted or rebuilt to account for differences in plant behavior. We are, therefore, entering an era of personalization of machine learning at a scale that we have never imagined before. The scenario is scary because we wouldn’t have the resources to pay attention to these millions of individual models. Cisco projects 50 billion devices to be connected by 2020 and the global IoT market size to be over $14 trillion by 2022 [1, 2].

 

The need for simplification and automation of machine learning technologies 

If this scenario of widespread deployment of personalized machine learning is to play out, we absolutely need automation of machine learning to the extent that requires less expert assistance. Machine learning cannot continue to depend on high levels of professional expertise.  It has to be simplified to be similar to automobiles and spreadsheets where some basic training at a high school can certify one to use these tools. Once we simplify the usage of machine learning tools, it would lead to widespread deployment and usage of sensor-based technologies that also use machine learning and would create plenty of new jobs worldwide. Thus, simplification and automation of machine learning technologies is critical to the economics of deployment and usage of sensor-based systems. It should also open the door to many new kinds of devices and technologies.

 

The need for hardware-based localized machine learning for "anytime, anywhere" deployment and usage 

Although we talk about the Internet of Things, it would simply be too expensive to transmit all of the sensor-based data to a cloud-based platform for analysis and interpretation. It would make sense to process most of the data locally. Many experts predict that, in the future, about 60% of the data would be processed at the local level, in local networks - most of it may simply be discarded after processing and only some stored locally. There is a name for this kind of local processing – it’s called “edge computing” [3].

The main characteristics of data generated by these sensor-based systems are: high-velocity, high volume, high-dimensional and streaming. There are not many machine learning technologies that can learn in such an environment other than hardware-based neural network learning systems. The advantages of neural network systems are: (1) learning involves simple computations, (2) learning can take advantage of massively parallel brain-like computations, (3) they can learn from all of the data instead of samples of data, (4) scalability issues are non-existent, and (4) implementations on massively parallel hardware can provide real-time predictions in micro seconds. Thus, massively parallel neural network hardware can be particularly useful with high velocity streaming data in these sensor-based systems. Researchers at Arizona State University, in particular, are working on such a technology and it is available for licensing [4].

 

Conclusions

Hardware-based localized learning and monitoring will not only reduce the volume of Internet traffic and its cost, it will also reduce (or even eliminate) the dependence on a single control center, such as the cloud, for decision-making and control. Localized learning and monitoring will allow for distributed decision-making and control of machinery and equipment in IoT.

We are gradually moving to an era where machine learning can be deployed on an “anytime, anywhere” basis even when there is no access to a network and/or a cloud facility.

 

References

  1. Gartner (2013). "Forecast: The Internet of Things, Worldwide, 2013."

         https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-

     2. 10 Predictions for the Future of the Internet of Things

     3. Edge Computing

     4. Neural Networks for Large Scale Machine Learning

 

Read more…

Sponsor